Skip to main content
Log in

Dielectric Response of Ceramic 16BiScO3–42PbMg1/3Nb2/3O3–42PbTiO3 Solid Solutions in an Electrical Field

  • FERROELECTRICITY
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Some results of studying the dielectric and electromechanical properties of ceramic 16BiScO3–42PbMg1/3Nb2/3O3–42PbTiO3 relaxor ferroelectric samples in electrical fields (0 < E < 20 kV/cm) are presented. An appreciable decrease in the dielectric permittivity with time, and the disappearance of hysteresis in the dependence of the longitudinal strain on the electrical field intensity were revealed in the fields exceeding the coercive field (E > 10 kV/cm) and explained by the induced ferroelectric phase transition. The field-induced phase (presumably, tetragonal) was shown to be unstable and partially ordered. A nonmonotonical character demonstrated by the dielectric permittivity–time dependences of the studied ceramics unlike the other relaxor ferroelectrics was explained by the coexistence of glassy and ferroelectric phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. S. Zhang and F. Li, J. Appl. Phys. 111, 031301 (2012).

    Article  ADS  Google Scholar 

  2. S.-E. Park, and T. R. Shrout, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 1140 (1997).

    Article  Google Scholar 

  3. S.-E. Park, and T. R. Shrout, J. Appl. Phys. 82, 1804 (1997).

    Article  ADS  Google Scholar 

  4. S. J. Zhang, P. W. Rehrig, C. A. Randall, and T. R. Shrout, J. Cryst. Growth 234, 415 (2002).

    Article  ADS  Google Scholar 

  5. N. Yasuda, H. Ohwa, M. Kume, K. Hayashi, Y. Hosono, and Y. Yamashita, J. Cryst. Growth 229, 229 (2001).

    Article  Google Scholar 

  6. S. J. Zhang, L. Lebrun, S. R. Rhee, R. E. Eitel, C. A. Randal, and T. R. Shrout, J. Cryst. Growth 236, 210 (2002).

    Article  ADS  Google Scholar 

  7. S. J. Zhang, S. M. Lee, D. H. Kim, H. Y. Lee, and T. R. Shrout, Appl. Phys. Lett. 90, 232911 (2007).

    Article  ADS  Google Scholar 

  8. S. J. Zhang, J. Luo, W. Hackenberger, and T. R. Shrout, J. Appl. Phys. 104, 064106 (2008).

    Article  ADS  Google Scholar 

  9. C. J. Stringer, T. R. Shrout, and C. A. Randall, J. Appl. Phys. 101, 054107 (2007).

    Article  ADS  Google Scholar 

  10. A. A. Bush, K. E. Kamentsev, M. A. Bekhtin, and A. G. Segalla, Phys. Solid State 59, 34 (2017).

    Article  ADS  Google Scholar 

  11. A. A. Bush, K. E. Kamentsev, A. M. Lavrent’ev, A. G. Segalla, and Yu. K. Fetisov, Inorg. Mater. 47, 779 (2011).

    Article  Google Scholar 

  12. M. V. Talanov, A. A. Bush, K. E. Kamentsev, V. P. Sirotinkin, and A. G. Segalla, J. Am. Ceram. Soc. 101, 683 (2018).

    Article  Google Scholar 

  13. S. L. Ginzburg, Irreversible Phenomena of Spin Glasses (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  14. Y.-H. Bing, A. A. Bokov, and Z.-G. Ye, Curr. Appl. Phys. 11, s14 (2011).

    Article  Google Scholar 

  15. A. A. Bush, V. P. Sirotinkin, A. G. Segalla, and A. I. Spitsin, Crystallogr. Rep. 63, 84 (2018).

    Article  ADS  Google Scholar 

  16. F. Chu, I. M. Reaney, and N. Setter, Ferroelectrics 151, 343 (1994).

    Article  Google Scholar 

  17. E. V. Colla, E. Y. Koroleva, N. M. Okuneva, and S. B. Vakhrushev, Phys. Rev. Lett. 74, 1681 (1995).

    Article  ADS  Google Scholar 

  18. L. S. Kamzina, Phys. Solid State 58, 2460 (2016).

    Article  ADS  Google Scholar 

  19. L. S. Kamzina and L. A. Kulakova, Phys. Solid State 60, 958 (2018).

    Article  ADS  Google Scholar 

  20. L. S. Kamzina, L. A. Kulakova, and H. Luo, Phys. Solid State 61, 580 (2019).

    Article  ADS  Google Scholar 

  21. L. S. Kamzina and L. A. Kulakova, Phys. Solid State 59, 298 (2017).

    Article  ADS  Google Scholar 

  22. L. S. Kamzina, L. A. Kulakova, and G. Li, Phys. Solid State 60, 2541 (2018).

    Article  ADS  Google Scholar 

  23. D.-S. Paik, S.-E. Park, S. Wada, S.-F. Liu, and T. R. Shrout, J. Appl. Phys. 85, 1080 (1999).

    Article  ADS  Google Scholar 

  24. B. Noheda, Z. Zhong, D. E. Cox, G. Shirane, S.‑E. Park, and P. Rehrig, Phys. Rev. B 65, 224101 (2002).

    Article  ADS  Google Scholar 

  25. W. Ren, S.-F. Liu, and B. K. Mukherjee, Appl. Phys. Lett. 80, 3174 (2002).

    Article  ADS  Google Scholar 

  26. M. Davis, D. Damjanovic, and N. Setter, Phys. Rev. B 73, 014115 (2006).

    Article  ADS  Google Scholar 

  27. M. V. Talanov, O. A. Bunina, M. A. Bunin, I. N. Zakharchenko, and L. A. Reznichenko, Phys. Solid State 55, 326 (2013).

    Article  ADS  Google Scholar 

  28. M. V. Talanov, L. A. Shilkina, and L. A. Reznichenko, Sens. Actuators, A 217, 62 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Kamzina.

Ethics declarations

The authors of this paper have no conflicts of interest.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamzina, L.S., Talanov, M.V., Bush, A.A. et al. Dielectric Response of Ceramic 16BiScO3–42PbMg1/3Nb2/3O3–42PbTiO3 Solid Solutions in an Electrical Field. Phys. Solid State 61, 1428–1432 (2019). https://doi.org/10.1134/S1063783419080146

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419080146

Keywords:

Navigation