Skip to main content
Log in

Edge misfit dislocations in Ge x Si1 − x /Si(001) (x ∼ 1) heterostructures: role of buffer Ge y Si1 − y (y < x) interlayer in their formation

  • Semiconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The structure of dislocations in Ge x Si1 − x (x ∼ 0.4–0.8) films grown by molecular beam epitaxy on Si(001) substrates tilted by 6° toward the nearest (111) plane has been studied. The epitaxy of GeSi films on substrates deviating from the exact (001) orientation has allowed us to establish the main mechanism of formation of edge misfit dislocations (MDs), which most effectively (for heterostructures of the given composition) relieve stresses caused by the mismatch between lattice parameters of the film and substrate. Despite the edge MDs being defined as immobile (sessile) dislocations, their formation proceeds according to the gliding mechanism proposed by Kvam et al. [J. Mater. Res. 5, 1900 (1990)]. A comparative estimation of the propagation velocities of the primary and induced 60° dislocations, as well as the resulting 90° MDs, has been performed. It has been established that the condition providing for the most effective edge MD formation by the induced nucleation mechanism is the appearance of 60° MDs in a stressed film immediately after it reached a critical thickness. A source of these dislocations can be provided by a preliminarily grown buffer GeSi layer that occurs in a metastable state at the initial stage of plastic relaxation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. C. Houghton, D. D. Perovic, J.-M. Baribeau, and G. G. Weatherty, J. Appl. Phys. 67, 1850 (1990).

    Article  ADS  Google Scholar 

  2. K. H. Chang, P. K. Bhattacharya, and R. Gibala, J. Appl. Phys. 66, 2993 (1989).

    Article  ADS  Google Scholar 

  3. E. P. Kvam, D. M. Maher, and C. J. Humpreys, J. Mater. Res. 5, 1900 (1990).

    Article  ADS  Google Scholar 

  4. Yu. B. Bolkhovityanov, A. S. Deryabin, A. K. Gutakovskii, and L. V. Sokolov, Appl. Phys. Lett. 92, 131901 (2008).

    Article  ADS  Google Scholar 

  5. Yu. B. Bolkhovityanov, A. S. Deryabin, A. K. Gutakovskii, and L. V. Sokolov, J. Cryst. Growth 310, 3422 (2008).

    Article  ADS  Google Scholar 

  6. Yu. B. Bolkhovityanov, A. K. Gutakovskii, A. S. Deryabin, and L. V. Sokolov, Phys. Solid State 50(10), 1857 (2008).

    Article  ADS  Google Scholar 

  7. Yu. B. Bolkhovityanov, A. K. Gutakovskii, A. S. Deryabin, and L. V. Sokolov, Phys. Solid State 52(1), 32 (2010).

    Article  ADS  Google Scholar 

  8. Yu. B. Bolkhovityanov, A. K. Gutakovskii, V. I. Mashanov, O. P. Pchelyakov, M. A. Revenko, and L. V. Sokolov, J. Appl. Phys. 91, 4710 (2002).

    Article  ADS  Google Scholar 

  9. Yu. B. Bolkhovityanov, A. S. Deryabin, A. K. Gutakovskii, A. V. Kolesnikov, and L. V. Sokolov, Semiconductors 41(10), 1234 (2007).

    Article  ADS  Google Scholar 

  10. R. Hull, J. C. Bean, D. J. Werder, and R. E. Leibenguth, Phys. Rev. B: Condens. Matter 40, 1681 (1989).

    Article  ADS  Google Scholar 

  11. B. W. Dodson and J. Y. Tsao, Appl. Phys. Lett. 31, 1325 (1987).

    Article  ADS  Google Scholar 

  12. L. B. Freund and R. Hull, J. Appl. Phys. 71, 2054 (1992).

    Article  ADS  Google Scholar 

  13. R. S. Goldman, K. L. Kavanagh, H. H. Wieder, S. N. Ehrlich, and R. M. Feenstra, J. Appl. Phys. 83, 5137 (1998).

    Article  ADS  Google Scholar 

  14. A. Fisher, Appl. Phys. Lett. 64, 1218 (1994).

    Article  ADS  Google Scholar 

  15. J. P. Hirth and J. Lothe, Theory of Dislocations, 2nd ed. (Wiley, New York, 1982), p. 231.

    Google Scholar 

  16. L. B. Freund, MRS Bull. 17, 52 (1992).

    Google Scholar 

  17. J. W. Matthews and A. E. Blakeslee, J. Cryst. Growth 27, 118 (1974).

    ADS  Google Scholar 

  18. S. V. Kamat and J. P. Hirth, J. Appl. Phys. 67, 6844 (1990).

    Article  ADS  Google Scholar 

  19. Yu. B. Bolkhovityanov, A. K. Gutakovskii, A. S. Deryabin, O. P. Pchelyakov, and L. V. Sokolov, Semiconductors 42(1), 1 (2008).

  20. J. Cai, P. M. Mooney, S. H. Christiansen, H. Chen, O. Chu, and J. A. Ott, J. Appl. Phys. 95, 5347 (2004).

    Article  ADS  Google Scholar 

  21. M. Bauer, K. Lyutovich, M. Oehme, E. Kasper, H.-J. Herzong, and F. Ernst, Thin Solid Films 369, 152 (2000).

    Article  ADS  Google Scholar 

  22. J. Nakatsuru, H. Date, S. Mashiro, and M. Ikemoto, Mater. Res. Soc. Symp. Proc. 891, EE07–24.1 (2006).

    Google Scholar 

  23. T. H. Loh, H. S. Nguyen, C. H. Tung, A. D. Trigg, G. Q. Lo, N. Balasubramanian, D. L. Kwong, and S. Tripathy, Appl. Phys. Lett. 90, 092108 (2007).

    Article  ADS  Google Scholar 

  24. Z. Zhou, C. Li, H. Lai, S. Chen, and J. Yu, J. Cryst. Growth 310, 2508 (2008).

    Article  ADS  Google Scholar 

  25. M. Myronov and Y. Shiraki, J. Cryst. Growth 301–302, 315 (2007).

    Article  Google Scholar 

  26. W. Hu, B. Cheng, C. Xue, H. Xue, S. Su, A. Bai, L. Luo, Y. Yu, and Q. Wang, Appl. Phys. Lett. 95, 092102 (2009).

    Article  ADS  Google Scholar 

  27. Cheng Buwen, Xue Chunlai, Luo Liping, Han Genquan, Zeng Yugang, Xue Haiyun, and Wang Qiming, Cailiao Kexue Yu Gongcheng Xuebao (J. Mater. Sci. Eng.) 27, 118, (2009).

    Google Scholar 

  28. T. H. Yang, G. L. Luo, E. Y. Chang, Y. C. Hsieh, and C. Y. Chang, J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.-Process., Meas., Phenom. 22, L17 (2004).

    Article  ADS  Google Scholar 

  29. S. Dey, S. Joshi, D. Garcia-Gutierrez, M. Chaumont, A. Campion, M. Jose-Yacaman, and S. K. Banerjee, J. Electron. Mater. 35, 1607 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. B. Bolkhovityanov.

Additional information

Original Russian Text © Yu.B. Bolkhovityanov, A.K. Gutakovskii, A.S. Deryabin, L.V. Sokolov, 2011, published in Fizika Tverdogo Tela, 2011, Vol. 53, No. 9, pp. 1699–1705.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bolkhovityanov, Y.B., Gutakovskii, A.K., Deryabin, A.S. et al. Edge misfit dislocations in Ge x Si1 − x /Si(001) (x ∼ 1) heterostructures: role of buffer Ge y Si1 − y (y < x) interlayer in their formation. Phys. Solid State 53, 1791–1797 (2011). https://doi.org/10.1134/S1063783411090083

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783411090083

Keywords

Navigation