Skip to main content
Log in

Dependence of the ion energy on the parameters of the laser pulse and target in the radiation-pressure-dominated regime of acceleration

  • Particle Acceleration in Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

When the dominant mechanism for ion acceleration is the laser radiation pressure, the conversion efficiency of the laser energy into the energy of relativistic ions may be very high. Stability analysis of a thin plasma layer accelerated by the radiation pressure shows that Raleigh-Taylor instability may enhance plasma inhomogeneity. In the linear stage of instability, the plasma layer decays into separate bunches, which are accelerated by the radiation pressure similarly to clusters accelerated under the action of an electromagnetic wave. The energy and luminosity of an ion beam accelerated in the radiation-pressure-dominated regime are calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Veksler, At. Énerg. 2, 427 (1957).

    Google Scholar 

  2. G. Mourou, T. Tajima, and S. V. Bulanov, Rev. Mod. Phys. 78, 309 (2006).

    Article  ADS  Google Scholar 

  3. M. Borghesi, J. Fuchs, S. V. Bulanov, et al., Fusion Sci. Technol. 49, 412 (2006).

    Google Scholar 

  4. M. Borghesi, A. Bigongiari, S. Kar, et al., Plasma Phys. Controlled Fusion 5, 124040 (2008).

    Article  ADS  Google Scholar 

  5. S. V. Bulanov and V. S. Khoroshkov, Fiz. Plazmy 28, 493 (2002) [Plasma Phys. Rep. 28, 453 (2002)].

    ADS  Google Scholar 

  6. S. V. Bulanov, Ò. Zh. Esirkepov, V. S. Khoroshkov, et al., Phys. Lett. A 299, 240 (2002).

    Article  ADS  Google Scholar 

  7. E. Fourkal, B. Shahine, M. Ding, et al., Med. Phys. 29, 2788 (2002).

    Article  Google Scholar 

  8. S. V. Bulanov, H. Daido, T. Zh. Esirkepov, et al., AIP Conf. Proc. 740, 414 (2004).

    Article  ADS  Google Scholar 

  9. V. Malka, S. Fritzler, E. Lefebre, et al., Med. Phys. 31, 1587 (2004).

    Article  Google Scholar 

  10. T. Toncian, M. Borghesi, J. Fuchs, et al., Science 312, 410 (2006).

    Article  ADS  Google Scholar 

  11. S. S. Bulanov, A. V. Brantov, V. Yu. Bychenkov, et al., Med. Phys. 35, 1770 (2008).

    Article  Google Scholar 

  12. M. Murakami, Y. Hishikawa, S. Miyajima, et al., AIP Conf. Proc. 1024, 275 (2008).

    Article  ADS  Google Scholar 

  13. M. Roth, T. E. Cowan, M. H. Key, et al., Phys. Rev. Lett. 86, 436 (2001).

    Article  ADS  Google Scholar 

  14. I. Spencer, K. D. W. Ledingham, R. P. Singhal, et al., Nucl. Instrum. Methods Phys. Res. B 183, 449 (2001).

    Article  ADS  Google Scholar 

  15. S. Fritzler, V. Malka, G. Grillon, et al., Appl. Phys. Lett. 83, 3039 (2003).

    Article  ADS  Google Scholar 

  16. K. W. D. Ledingham, P. McKenna, R. P. Singhal, et al., Science 300, 1107 (2003).

    Article  ADS  Google Scholar 

  17. K. Krushelnick, E. L. Clark, R. Allot, et al., IEEE Trans. Plasma Sci. 28, 1184 (2000).

    Article  ADS  Google Scholar 

  18. P. Antici, M. Fazi, A. Lombardi, et al., J. Appl. Phys. 104, 124901 (2008).

    Article  ADS  Google Scholar 

  19. T. Zh. Esirkepov, M. Borghesi, S. V. Bulanov, et al., Phys. Rev. Lett. 92, 175003 (2004).

    Article  ADS  Google Scholar 

  20. M. Borghesi, D. B. Campbell, A. Schiavi, et al., Phys. Plasmas 9, 2214 (2002).

    Article  ADS  Google Scholar 

  21. S. V. Bulanov, T. Zh. Esirkepov, P. Migliozzi, et al., Nucl. Instrum. Methods Phys. Res. A 540, 25 (2005).

    Article  ADS  Google Scholar 

  22. S. V. Bulanov, F. Califano, G. I. Dudnikova, et al., in Reviews of Plasma Physics, Ed. by V. D. Shafranov (Kluwer Academic, New York, 2001), Vol. 22, p. 227.

    Google Scholar 

  23. M. Passoni, V. T. Tikhonchuk, M. Lontano, and V. Yu. Byschenkov, Phys. Rev. E 69, 026411 (2004).

    Article  ADS  Google Scholar 

  24. M. Nishiuchi, A. Fukumi, H. Daido, et al., Phys. Lett. A 357, 339 (2006).

    Article  MATH  ADS  Google Scholar 

  25. M. Passoni and M. Lontano, Phys. Rev. Lett. 101, 115001 (2008).

    Article  ADS  Google Scholar 

  26. A. Andreev, A. Levy, T. Ceccotti, et al., Phys. Rev. Lett. 101, 155002 (2008).

    Article  ADS  Google Scholar 

  27. A. V. Kuznetsov, T. Zh. Esirkepov, F. F. Kamenets, and S. V. Bulanov, Fiz. Plazmy 27, 225 (2001) [Plasma Phys. Rep. 27, 211 (2001)].

    Google Scholar 

  28. K. Matsukado, T. Esirkepov, K. Kinoshita, et al., Phys. Rev. Lett. 91, 215001 (2003).

    Article  ADS  Google Scholar 

  29. S. V. Bulanov, D. D. Dylov, T. Zh. Esirkepov, et al., Fiz. Plazmy 31, 409 (2005) [Plasma Phys. Rep. 31, 369 (2005)].

    Google Scholar 

  30. A. Yogo, H. Daido, S. V. Bulanov, et al., Phys. Rev. E 77, 016401 (2008).

    Article  ADS  Google Scholar 

  31. S. V. Bulanov and T. Zh. Esirkepov, Phys. Rev. Lett. 98, 049503 (2007).

    Article  ADS  Google Scholar 

  32. I. Last, I. Schek, and J. Jortner, J. Chem. Phys. 107, 6685 (1997).

    Article  ADS  Google Scholar 

  33. K. Nishihara, H. Amitani, M. Murakami, et al., Nucl. Instrum. Methods Phys. Res. A 464, 9 (2001).

    Article  Google Scholar 

  34. V. E. Kovalev and V. Yu. Bychenkov, Phys. Rev. Lett. 90, 185004 (2003).

    Article  ADS  Google Scholar 

  35. E. Yu. Echkina, I. N. Inovenkov, T. Zh. Esirkepov, et al., Laser Physics 19, 228 (2009).

    Article  ADS  Google Scholar 

  36. T. Nakamura, Y. Fukuda, A. Yogo, et al., Phys. Lett. A 374, 1 (2009).

    Article  Google Scholar 

  37. T. Ditmire, T. Donnelly, A. M. Rubenchik, et al., Phys. Rev. A 53, 3379 (1996).

    Article  ADS  Google Scholar 

  38. T. Ditmire, J. W. G. Tisch, E. Springate, et al., Nature 386, 54 (1997).

    Article  ADS  Google Scholar 

  39. I. Last and J. Jortner, Phys. Rev. Lett. 87, 033401 (2001).

    Article  ADS  Google Scholar 

  40. M. Hohenberger, D. R. Symes, K. W. Madison, et al., Phys. Rev. Lett. 95, 195003 (2005).

    Article  ADS  Google Scholar 

  41. S. Sakabe, S. Shimizu, M. Hashida, et al., Phys. Rev. A 69, 023203 (2004).

    Article  ADS  Google Scholar 

  42. A. V. Gurevich, L. V. Pariĭskaya, and L. P. Pitaevskiĭ, Zh. Éksp. Teor. Fiz. 49, 647 (1966) [Sov. Phys. JETP 22, 449 (1966)].

    Google Scholar 

  43. P. Mora, Phys. Rev. Lett. 90, 185002 (2003).

    Article  ADS  Google Scholar 

  44. A. V. Gurevich and L. P. Pitaevskiĭ, Zh. Éksp. Teor. Fiz. 63, 516 (1972) [Sov. Phys. JETP 36, 274 (1972)].

    Google Scholar 

  45. S. V. Bulanov, T. Zh. Esirkepov, J. Koga, et al., Fiz. Plazmy 30, 21 (2004) [Plasma Phys. Rep. 30, 18 (2004)].

    Google Scholar 

  46. G. Hairapetian and R. L. Stenzel, Phys. Rev. Lett. 61, 1607 (1988).

    Article  ADS  Google Scholar 

  47. S. V. Bulanov, T. Zh. Esirkepov, J. Koga, and T. Tajima, Fiz. Plazmy 30, 221 (2004) [Plasma Phys. Rep. 30, 196 (2004)].

    Google Scholar 

  48. F. Pegoraro and S. V. Bulanov, Phys. Rev. Lett. 99, 065002 (2007).

    Article  ADS  Google Scholar 

  49. S. V. Bulanov, T. Zh. Esirkepov, P. Pegoraro, and M. Borghesi, Compt. Rendus 10, 216 (2009).

    Article  ADS  Google Scholar 

  50. T. Esirkepov, T. Tajima, and M. Yamagiwa, Phys. Rev. Lett. 96, 105001 (2006).

    Article  ADS  Google Scholar 

  51. T. V. Liseykina, M. Borghesi, A. Macchi, and S. Tuveri, Plasma Phys. Controlled Fusion 50, 124033 (2008).

    Article  ADS  Google Scholar 

  52. S. S. Bulanov, A. Brantov, V. Yu. Bychenkov, et al., Phys. Rev. E 8, 026412 (2008).

    Article  ADS  Google Scholar 

  53. O. Klimo, J. Psikal, J. Limpouch, and V. T. Tikhonchuk, Phys. Rev. ST Accel. Beams 11, 031301 (2008).

    Article  ADS  Google Scholar 

  54. M. Chen, A. Pukhov, T. P. Yu, and Z. M. Sheng, Phys. Plasmas 15, 113103 (2008).

    Article  ADS  Google Scholar 

  55. X. Q. Yan, C. Lin, Z. M. Sheng, et al., Phys. Rev. Lett. 100, 135003 (2008).

    Article  ADS  Google Scholar 

  56. S. G. Rykovanov, J. Schreiber, J. Meyer-ter-Vehn, et al., New J. Phys. 10, 113005 (2008).

    Article  ADS  Google Scholar 

  57. J. Davis and G. M. Petrov, Phys. Plasmas 16, 023105 (2009).

    Article  ADS  Google Scholar 

  58. B. Qiao, M. Zepf, M. Borghesi, and M. Geissler, Phys. Rev. Lett. 102, 145002 (2009).

    Article  ADS  Google Scholar 

  59. N. M. Naumova, T. Schlegel, V. T. Tikhonchuk, et al., Phys. Rev. Lett. 102, 025002 (2009).

    Article  ADS  Google Scholar 

  60. A. Zhidkov, J. Koga, A. Sasaki, and M. Uesaka, Phys. Rev. Lett. 88, 185002 (2002).

    Article  ADS  Google Scholar 

  61. Ya. B. Zel’dovich and A. F. Illarionov, Zh. Éksp. Teor. Fiz. 61, 880 (1972) [Sov. Phys. JETP 34, 467 (1972)].

    Google Scholar 

  62. A. D. Steiger and C. H. Woods, Phys. Rev. D 5, 2912 (1972).

    Article  ADS  Google Scholar 

  63. Ya. B. Zel’dovich, Usp. Fiz. Nauk 115, 161 (1975) [Sov. Phys. Usp. 18, 79 (1975)].

    Google Scholar 

  64. C. H. Keitel, C. Szymanowski, P. L. Knight, et al., J. Phys. B 31, L75 (1998).

    Article  ADS  Google Scholar 

  65. J. Koga, T. Zh. Esirkepov, and S. V. Bulanov, Phys. Plasmas 12, 093106 (2005).

    Article  ADS  Google Scholar 

  66. J. Koga, T. Zh. Esirkepov, and S. V. Bulanov, J. Plasma Phys. 72, 1315 (2006).

    Article  ADS  Google Scholar 

  67. V. I. Berezhiani, S. M. Mahajan, and Z. Yoshida, Phys. Rev. E 78, 066403 (2008).

    Article  ADS  Google Scholar 

  68. A. Di Piazza, Lett. Math. Phys. 83, 305 (2008).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  69. S. Kar, M. Borghesi, S. V. Bulanov, et al., Phys. Rev. Lett. 100, 225004 (2008).

    Article  ADS  Google Scholar 

  70. S. V. Bulanov, T. Zh. Esirkepov, D. Habs, et al., Eur. Phys. J. D 55, 483 (2009).

    Article  Google Scholar 

  71. W. Pauli, The Theory of Relativity (Pergamon, Oxford, 1947).

    Google Scholar 

  72. T. Zh. Esirkepov, Comput. Phys. Commun. 135, 144 (2001).

    Article  MATH  ADS  Google Scholar 

  73. F. Pegoraro, T. Zh. Esirkepov, S. V. Bulanov, et al., Phys. Lett. A 347, 133 (2005).

    Article  ADS  Google Scholar 

  74. M. Bordag, U. Mohideen, and V. M. Mostepanenko, Phys. Rep. 353, 1 (2001).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  75. A. M. Fedotov, Y. E. Lozovik, N. B. Narozhny, et al., Phys. Rev. A 74, 013806 (2006).

    Article  ADS  Google Scholar 

  76. L. Crispino, A. Higuchi, and G. E. A. Matsas, Rev. Mod. Phys. 80, 787 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  77. M. Marklund and P. Shukla, Rev. Mod. Phys. 78, 591 (2006).

    Article  ADS  Google Scholar 

  78. Y. I. Salamin, S. X. Hu, K. S. Hatsagorsyan, and C. H. Keitel, Phys. Rep. 427, 41 (2006).

    Article  ADS  Google Scholar 

  79. S. V. Bulanov, N. M. Naumova, and F. Pegoraro, Phys. Plasmas 1, 745 (1994).

    Article  ADS  Google Scholar 

  80. R. Lichters, J. Meyer-ter-Vehn, and A. M. Pukhov, Phys. Plasmas 3, 3425 (1996).

    Article  ADS  Google Scholar 

  81. V. A. Vshivkov, N. M. Naumova, F. Pegoraro, and S. V. Bulanov, Phys. Plasmas 5, 2727 (1998).

    Article  ADS  Google Scholar 

  82. A. S. Pirozhkov, S. V. Bulanov, T. Zh. Esirkepov, et al., Phys. Lett. A 349, 256 (2006).

    Article  ADS  Google Scholar 

  83. A. S. Pirozhkov, S. V. Bulanov, T. Zh. Esirkepov, et al., Phys. Plasmas 13, 013107 (2006).

    Article  ADS  Google Scholar 

  84. C. Thaury, H. George, F. Quere, et al., Nature Phys. 3, 424 (2007).

    Article  ADS  Google Scholar 

  85. B. Dromey, S. Kar, C. Bellei, et al., Phys. Rev. Lett. 99, 085001 (2007).

    Article  ADS  Google Scholar 

  86. T. J. M. Boyd and R. Ondarza-Rovira, Phys. Rev. Lett. 98, 105001 (2007).

    Article  ADS  Google Scholar 

  87. A. Tarasevitch, A. Lobov, C. Wunsche, and D. von der Linde, Phys. Rev. Lett. 98, 103902 (2007).

    Article  ADS  Google Scholar 

  88. S. G. Rykovanov, M. Geissler, J. Meyer-ter-Vehn, and G. D. Tsakiris, New J. Phys. 10, 025025 (2008).

    Article  ADS  Google Scholar 

  89. S. V. Bulanov, T. Zh. Esirkepov, and T. Tajima, Phys. Rev. Lett. 91, 085001 (2003).

    Article  ADS  Google Scholar 

  90. M. Kando, Y. Fukuda, A. S. Pirozhkov, et al., Phys. Rev. Lett. 99, 135001 (2007).

    Article  ADS  Google Scholar 

  91. A. S. Pirozhkov, J. Ma, T. Zh. Esirkepov, et al., Phys. Plasmas 14, 123106 (2007).

    Article  ADS  Google Scholar 

  92. N. M. Naumova, J. A. Nees, I. V. Sokolov, et al., Phys. Rev. Lett. 92, 063902 (2004).

    Article  ADS  Google Scholar 

  93. S. S. Bulanov, T. Zh. Esirkepov, F. F. Kamenets, et al., Phys. Rev. E. 73, 036408 (2006).

    Article  ADS  Google Scholar 

  94. N. M. Naumova, J. A. Nees, and G. A. Mourou, Phys. Plasmas 12, 056707 (2005).

    Article  ADS  Google Scholar 

  95. V. V. Kulagin, V. A. Cherepenin, M. S. Hur, and H. Suk, Phys. Plasmas 14, 11310 (2007).

    Google Scholar 

  96. N. N. Rosanov, Pis’ma Zh. Éksp. Teor. Fiz. 88, 577 (2008) [JETP Lett. 88, 501 (2008)].

    Google Scholar 

  97. D. Habs, M. Hegelich, J. Schreiber, et al., Appl. Phys. B 93, 349354 (2008).

    Article  Google Scholar 

  98. A. V. Panchenko, T. Zh. Esirkepov, A. S. Pirozhkov, et al., Phys. Rev. E 78, 056402 (2008).

    Article  ADS  Google Scholar 

  99. V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Quantum Electrodynamics (Nauka, Moscow, 1980; Pergamon, Oxford, 1982).

    Google Scholar 

  100. E. Ott, Phys. Rev. Lett. 29, 1429 (1972).

    Article  ADS  Google Scholar 

  101. W. Manheimer, D. Colombant, and E. Ott, Phys. Fluids 27, 2164 (1984).

    Article  MATH  ADS  Google Scholar 

  102. T. Taguchi and K. Mima, Phys. Plasmas 2, 279 (1995).

    Article  Google Scholar 

  103. F. Pegoraro, S. V. Bulanov, J. Sakai, and G. Tomassini, Phys. Rev. E 64, 016415 (2001).

    Article  ADS  Google Scholar 

  104. S. S. Bryushgens, Differential Geometry (Moscow, Izd-vo LKI, 2008) [in Russian].

    Google Scholar 

  105. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Nauka, Moscow, 1973; Pergamon, Oxford, 1975).

    Google Scholar 

  106. V. I. Arnold, Catastrophe Theory (Izd-vo Mosk. Gos. Univ., Moscow, 1983; Springer-Verlag, Berlin, 1986).

    Google Scholar 

  107. M. Dunne, Nature Phys. 2, 2 (2006).

    Article  ADS  Google Scholar 

  108. G. Marx, Nature 211, 22 (1966).

    Article  ADS  Google Scholar 

  109. A. P. L. Robinson, M. Zepf, S. Kar, et al., New J. Phys. 10, 01302 (2008).

    Article  Google Scholar 

  110. S. Humphries, Jr., Principles of Charged Particle Acceleration (Wiley, New York, 1999).

    Google Scholar 

  111. M. Kando, Y. Fukuda, H. Kotaki, et al., Zh. Éksp. Teor. Fiz. 132, 1052 (2007) [JETP 105, 916 (2007)].

    Google Scholar 

  112. T. Ludlam and L. McLerran, Phys. Today 56, 48 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © E.Yu. Echkina, I.N. Inovenkov, T.Zh. Esirkepov, F. Pegoraro, M. Borghesi, S.V. Bulanov, 2010, published in Fizika Plazmy, 2010, Vol. 36, No. 1, pp. 17–32.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Echkina, E.Y., Inovenkov, I.N., Esirkepov, T.Z. et al. Dependence of the ion energy on the parameters of the laser pulse and target in the radiation-pressure-dominated regime of acceleration. Plasma Phys. Rep. 36, 15–29 (2010). https://doi.org/10.1134/S1063780X10010022

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X10010022

Keywords

Navigation