Skip to main content
Log in

Is it possible to discover a dark matter particle with an accelerator?

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The paper contains description of the main properties of the galactic dark matter (DM) particles, available approaches for detection of DM, main features of direct DM detection, ways to estimate prospects for the DM detection, the first collider search for a DM candidate within an Effective Field Theory, complete review of ATLAS results of the DM candidate search with LHC RUN I, and less complete review of “exotic” dark particle searches with other accelerators and not only. From these considerations it follows that one is unable to prove, especially model-independently, a discovery of a DM particle with an accelerator, or collider. One can only obtain evidence on existence of a weakly interacting neutral particle, which could be, or could not be the DM candidate. The current LHC DM search program uses only the missing transverse energy signature. Non-observation of any excess above Standard Model expectations forces the LHC experiments to enter into the same fighting for the best exclusion curve, in which (almost) all direct and indirect DM search experiments permanently take place. But this fighting has very little (almost nothing) to do with a real possibility of discovering a DM particle. The true DM particles possess an exclusive galactic signature—annual modulation of a signal, which is accessible today only for direct DM detection experiments. There is no way for it with a collider, or accelerator. Therefore to prove the DM nature of a collider-discovered candidate one must find the candidate in a direct DM experiment and demonstrate the galactic signature for the candidate. Furthermore, being observed, the DM particle must be implemented into a modern theoretical framework. The best candidate is the supersymmetry, which looks today inevitable for coherent interpretation of all available DM data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Zwicky, “The redshift of extragalactic nebulae,” Helv. Phys. Acta 6, 110–127 (1933).

    ADS  MATH  Google Scholar 

  2. M. Livio and J. Silk, “Broaden the search for dark matter,” Nature 507, 29 (2014), (arXiv:1404.2591 [astro-ph.CO]).

    Article  ADS  Google Scholar 

  3. M. Drees, and G. Gerbier, “Mini-review of dark matter,” 2012, arXiv:1204.2373 [astro-ph.CO].

    Google Scholar 

  4. T. Saab, “An introduction to dark matter direct detection searches and techniques,” arXiv:1203.2566 [astro-ph.CO].

  5. G. Bertone, D. Hooper, and J. Silk, “Particle dark matter: Evidence, candidates and constraints,” Phys. Rept. 405, 279–390 (2005), (arXiv:hep-ph/0404175 [astro-ph.CO]).

    Article  ADS  Google Scholar 

  6. B. Famaey, “Dark matter in the Milky way,” arXiv:1501.01788 [astro-ph.GA].

  7. F. Iocco, M. Pato, and G. Bertone, “Evidence for dark matter in the inner Milky way,” arXiv:1502.03821 [astro-ph.GA].

  8. R. Durazo, X. Hernandez, and S. Mendoza, Evidence for dark matter in the inner Milky way…really?; arXiv:1503.07501 [astro-ph.GA].

  9. S. McGaugh, F. Lelli, M. Pawlowski, G. Angus, O. Bienaymé, et al., Comment on “Evidence for dark matter in the inner Milky way”, arXiv:1503.07813 [astro-ph.GA].

  10. F. Iocco, M. Pato, and G. Bertone, Reply to comment on “Evidence for dark matter in the inner Milky way”; arXiv:1503.08784 [astro-ph.GA].

  11. Y. Sofue, “Dark halos of M31 and the Milky way,” arXiv:1504.05368 [astro-ph.GA].

  12. M. Kuhlen, M. Vogelsberger, and R. Angulo, “Numerical simulations of the dark universe: State of the art and the next decade,” Phys. Dark Univ. 1, 50–93 (2012), (arXiv:1209.5745 [astro-ph.CO]).

    Article  Google Scholar 

  13. G. B. Gelmini, “TASI 2014 lectures: The hunt for dark matter,” arXiv:1502.01320 [hep-ph].

  14. B. Hoeneisen, “Trying to understand dark matter,” arXiv:1502.07375 [physics.gen-ph].

  15. J.-M. Frere, “Dark matter variations,” arXiv:1504.08220 [hep-ph].

  16. M. Kamionkowski, and A. Kinkhabwala, “Galactic halo models and particle dark matter detection,” Phys. Rev. D 57, 3256–3263 (1998), (arXiv:hep-ph/9710337).

    Article  ADS  Google Scholar 

  17. M. Pato, F. Iocco, and G. Bertone, “Dynamical constraints on the dark matter distribution in the Milky way,” arXiv:1504.06324 [astro-ph.GA].

  18. E. W. Kolb, and M. S. Turner, “The early universe,” Front. Phys. 69, 1–547 (1990).

    ADS  MathSciNet  MATH  Google Scholar 

  19. J. L. Feng, “Dark matter candidates from particle physics and methods of detection,” Ann. Rev. Astron. Astrophys. 48, 495–545 (2010), (arXiv:1003.0904 [astro-ph.CO]).

    Article  ADS  Google Scholar 

  20. N. D. Christensen, T. Han, J. Song, “Determining the dark matter particle mass through antler topology processes at lepton colliders,” Phys. Rev. D 90, 114029 (2014), (arXiv:1404.6258 [astro-ph.CO]).

    Article  ADS  Google Scholar 

  21. R. Cerulli, R. Bernabei, P. Belli, F. Cappella, C. Dai et al. (DAMA Collaboration), “Technical aspects in dark matter investigations,” arXiv:1201.4582 [astro-ph.CO].

  22. D. Bauer et al. (Snowmass 2013 Cosmic Frontier Working Groups 1P4 Collaboration), “Dark matter in the coming decade: Complementary paths to discovery and beyond,” Phys. Dark Univ. 7–8, 16–23 (2015), (arXiv:1305.1605 [astro-ph.CO]).

    Article  Google Scholar 

  23. A. Askew, S. Chauhan, B. Penning, W. Shepherd, and M. Tripathi, “Searching for dark matter at Hadron Colliders,” Int. J. Mod. Phys. A 29, 1430041 (2014), (arXiv:1406.5662 [astro-ph.CO]).

    Article  ADS  Google Scholar 

  24. B. Zitzer (VERITAS Collaboration), “The VERITAS dark matter program,” arXiv:1503.0074 [astro-ph.CO].

  25. A. Ibarra, A. S. Lamperstorfer, S. L. Gehler, M. Pato, and G. Bertone, “On the sensitivity of CTA to gammaray boxes from multi-TeV dark matter,” arXiv:1503.0679 [astro-ph.CO].

  26. M. Ackermann et al. (Fermi-LAT Collaboration), “Searching for dark matter annihilation from Milky way dwarf spheroidal galaxies with six years of Fermi-LAT data,” arXiv:1503.0264 [astro-ph.CO].

  27. J. Conrad, J. Cohen-Tanugi, and L. E. Strigari, “WIMP searches with gamma rays in the Fermi era: Challenges, methods and results,” arXiv:1503.0634 [astro-ph.CO].

  28. K. Choi et al. (Super-Kamiokande Collaboration), “Search for neutrinos from annihilation of captured low-mass dark matter particles in the Sun by Super-Kamiokande,” arXiv:1503.0485 [astro-ph.CO].

  29. S. Kasuya, M. Kawasaki, and T. T. Yanagida, “Ice-Cube potential for detecting the Q-ball dark matter in gauge mediation,” arXiv:1502.00715 [hep-ph].

  30. J. Zornoza and G. Lambard (ANTARES Collaboration), “Results and prospects of dark matter searches with ANTARES,” Nucl. Instrum. Meth. A 742, 173–176 (2014) (arXiv:1404.0148 [astro-ph.HE]).

    Article  ADS  Google Scholar 

  31. A. Avrorin et al. (Baikal Collaboration), “Search for neutrino emission from relic dark matter in the Sun with the Baikal NT200 detector,” arXiv:1405.3551 [astro-ph.HE].

  32. D. Hooper and W. Xue, “Possibility of testing the light dark matter hypothesis with the alpha magnetic spectrometer,” Phys. Rev. Lett. 110 (4), 041302 (2013), (arXiv:1210.1220 [astro-ph.HE]).

    Article  ADS  Google Scholar 

  33. O. Adriani et al. (PAMELA Collaboration), “An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV,” Nature 458, 607–609 (2009), (arXiv:0810.4995 [astro-ph]).

    Article  ADS  Google Scholar 

  34. G. Giesen, M. Boudaud, Y. Genolini, V. Poulin, M. Cirelli et al. (AMS-02 Collaboration), “AMS-02 antiprotons, at last! Secondary astrophysical component and immediate implications for dark matter,” arXiv:1504.0427 [astro-ph]

  35. C. Evoli, D. Gaggero, and D. Grasso, “Secondary antiprotons as a galactic dark matter probe,” arXiv:1504.0517.

  36. S.-J. Lin, X.-J. Bi, P.-F. Yin, and Z.-H. Yu, “Implications for dark matter annihilation from the AMS-02 ratio:” arXiv:1504.0723.

  37. K. Hamaguchi, T. Moroi, and K. Nakayama, “AMS-02 antiprotons from annihilating or decaying dark matter,” arXiv:1504.05937 [hep-ph].

  38. C.-H. Chen, C.-W. Chiang, and T. Nomura, “Dark matter for excess of AMS-02 positrons and antiprotons,” arXiv:1504.0784.

  39. A. Abdo, M. Ackermann, M. Ajello, W. Atwood, L. Baldini et al. (Fermi-LAT Collaboration), “Fermi LAT search for photon lines from 30 to 200 GeV and dark matter implications,” Phys. Rev. Lett. 104, 091302 (2010), (arXiv:1001.4836 [astro-ph.HE]).

    Article  ADS  Google Scholar 

  40. M. Ackermann et al. (Fermi-LAT Collaboration), “Fermi LAT search for dark matter in gamma-ray lines and the inclusive photon spectrum,” Phys. Rev. D 86, 022002 (2012), (arXiv:1205.2739 [astro-ph])

    Article  ADS  Google Scholar 

  41. F. Calore, I. Cholis, C. McCabe, and C. Weniger, “A tale of tails: Dark matter interpretations of the Fermi GeV excess in light of background model systematics,” Phys. Rev. D 91 (6), 063003 (2015), (arXiv:1411.4647 [hep-ph]).

    Article  ADS  Google Scholar 

  42. A. Abramowski et al. (HESS Collaboration), “Search for photon-linelike signatures from dark matter annihilations with H.E.S.S.,” Phys. Rev. Lett. 110, 041301 (2013), (arXiv:1301.1173 [astro-ph.HE]).

    Article  ADS  Google Scholar 

  43. K. K. Boddy and J. Kumar, “Indirect detection of dark matter using mev-range gamma-ray telescopes; arXiv:1504.0402.

  44. K. Ghorbani and H. Ghorbani, “Scalar split WIMPs and galactic gamma-ray excess,” arXiv:1501.0020.

  45. K. Ghorbani, “Fermionic dark matter with pseudoscalar Yukawa interaction,” JCAP 1501, 015 (2015), (arXiv:1408.4929 [hep-ph]).

    Article  ADS  MathSciNet  Google Scholar 

  46. P. Cumani, A. Galper, V. Bonvicini, N. Topchiev, O. Adriani et al. (GAMMA-400 Collaboration), “The GAMMA-400 space mission,” arXiv:1502.0297.

  47. B. Bhattacherjee, M. Ibe, K. Ichikawa, S. Matsumoto, and K. Nishiyama, “Wino dark matter and future dSph observations,” JHEP 1407, 080 (2014), (arXiv:1405.4914 [hep-ph]).

    Article  ADS  Google Scholar 

  48. S. S. Campbell, and J. F. Beacom, “Combined flux and anisotropy searches improve sensitivity to gamma rays from dark matter,” arXiv:1312.3945 [astroph. HE].

  49. L. Bergstrom, “The 130 GeV fingerprint of righthanded neutrino dark matter,” Phys. Rev. D 86, 103514 (2012), (arXiv:1208.6082 [hep-ph]).

    Article  ADS  Google Scholar 

  50. T. Bringmann, and C. Weniger, “Gamma ray signals from dark matter: Concepts, status and prospects,” Phys. Dark Univ. 1, 194–217 (2012), (arXiv:1208.5481 [astro-ph.CO]).

    Article  Google Scholar 

  51. M. Regis, J.-Q. Xia, A. Cuoco, E. Branchini, N. Fornengo, and M. Viel, “Particle dark matter searches outside the local group,” Phys. Rev. Lett. 114, 241301 (2015), (arXiv:1503.0592).

    Article  ADS  Google Scholar 

  52. M. Y. Khlopov, “Introduction to the special issue of modern physics letters a indirect dark matter searches”, Mod. Phys. Lett. A 29, 1402001 (2014), (arXiv:1411.2150).

    Article  ADS  Google Scholar 

  53. M. A. Barstow, S. Casewell, S. Catalan, C. Copperwheat, B. Gaensicke et al. (GAIA Collaboration), “White paper: Gaia and the end states of stellar evolution,” arXiv:1407.6163 [astro-ph.CO].

  54. R. Feldmann, and D. Spolyar, “Detecting dark matter substructures around the Milky way with gaia,” Mon. Not. Roy. Astron. Soc. 446, 1000–1012 (2015), (arXiv:1310.2243).

    Article  ADS  Google Scholar 

  55. M. Angeles Perez-Garcia and J. Silk, “Constraining decaying dark matter with neutron stars,” Phys. Lett. B 744, 13–17 (2015), (arXiv:1403.6111).

    Article  ADS  Google Scholar 

  56. J. Fuller and C. Ott, “Dark matter-induced collapse of neutron stars: A possible link between fast radio bursts and the missing pulsar problem,” Mon. Not. Roy. Astron. Soc. L71, L75 (2015), (arXiv:1412.6119).

    Google Scholar 

  57. P. W. Graham, S. Rajendran, K. Van Tilburg, and T. D. Wiser, “Towards a bullet-proof test for indirect signals of dark matter,” arXiv:1502.0382 [astro-ph.CO].

  58. E. Carlson and S. Profumo, “When dark matter interacts with cosmic rays or interstellar matter: A morphological study,” arXiv:1504.0478 [astro-ph.CO].

  59. K. R. Dienes, J. Kumar, B. Thomas, and D. Yaylali, “Dark-matter decay as a complementary probe of multicomponent dark sectors,” Phys. Rev. Lett. 114 (5), 051301 (2015), (arXiv:1406.4868).

    Article  ADS  Google Scholar 

  60. M. Madhavacheril et al. (ACT Collaboration), “Evidence of lensing of the cosmic microwave background by dark matter halos,” Phys. Rev. Lett. 114 (15), 151302 (2015), (arXiv:1411.7999).

    Article  ADS  Google Scholar 

  61. P. Cushman, C. Galbiati, D. McKinsey, H. Robertson, T. Tait et al. (DMDD Working Group Collaboration), “Working group report: WIMP dark matter direct detection,” arXiv:1310.8327 [astro-ph.CO].

  62. M. W. Goodman and E. Witten, “Detectability of certain dark-matter candidates,” Phys. Rev. D 31, 3059 (1985).

    Article  ADS  Google Scholar 

  63. G. Jungman, M. Kamionkowski, and K. Griest, “Supersymmetric dark matter,” Phys. Rept. 267, 195–373 (1996), (arXiv:hep-ph/9506380).

    Article  ADS  Google Scholar 

  64. J. D. Lewin and P. F. Smith, “Review of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil,” Astropart. Phys. 6, 87–112 (1996).

    Article  ADS  Google Scholar 

  65. V. A. Bednyakov, “On possible lower bounds for the direct detection rate of SUSY dark matter,” Phys. Atom. Nucl. 66, 490–493 (2003), (arXiv:hep-ph/0201046).

    Article  ADS  Google Scholar 

  66. V. A. Bednyakov and H. V. Klapdor-Kleingrothaus, “About direct dark matter detection in next-to-minimal supersymmetric standard model,” Phys. Rev. D 59, 023514 (1999), (arXiv:hep-ph/9802344).

    Article  ADS  Google Scholar 

  67. V. A. Bednyakov, S. G. Kovalenko, H. V. Klapdor-Kleingrothaus, and Y. Ramachers, “Is SUSY accessible by direct dark matter detection?,” Z. Phys. A 357, 339–347 (1997), (hep-arXiv:hep-ph/9606261).

    Article  ADS  Google Scholar 

  68. M. Schumann, “Dual-phase liquid xenon detectors for dark matter searches,” JINST 9, C08004 (2014), (arXiv:1405.7600).

    Article  MathSciNet  Google Scholar 

  69. M. Schumann, “Dark matter 2014,” arXiv:1501.0120 [astro-ph.CO].

  70. E. Aprile et al. (XENON100 Collaboration), “Dark matter results from 225 live days of XENON100 data,” Phys. Rev. Lett. 109, 181301 (2012), (arXiv:1207.5988).

    Article  ADS  Google Scholar 

  71. E. Aprile et al. (XENON100 Collaboration), “Limits on spin-dependent WIMP-nucleon cross sections from 225 live days of XENON100 data,” Phys. Rev. Lett. 111 (2), 021301 (2013), (arXiv:1301.6620).

    Article  ADS  Google Scholar 

  72. S. Orrigo (XENON Collaboration), “Direct dark matter search with XENON100,” arXiv:1501.0349 [astroph. CO].

  73. D. Akerib et al. (LUX Collaboration), “First results from the LUX dark matter experiment at the sanford underground research facility,” Phys. Rev. Lett. 112, 091303 (2014), (arXiv:1310.8214).

    Article  ADS  Google Scholar 

  74. C. Savage, A. Scaffidi, M. White, and A. G. Williams, “LUX likelihood and limits on spin-independent and spin-dependent WIMP couplings with LUXCalc,” arXiv:1502.0266 [astro-ph.CO].

  75. X. Cao et al. (PandaX Collaboration), “PandaX: A liquid xenon dark matter experiment at CJPL,” Sci. China Phys. Mech. Astron. 57, 1476–1494 (2014), (arXiv:1405.2882).

    Article  ADS  Google Scholar 

  76. M. Xiao et al. (PandaX Collaboration), “First dark matter search results from the PandaX-I experiment,” Sci. China Phys. Mech. Astron. 57, 2024–2030 (2014), (arXiv:1408.5114).

    Article  ADS  Google Scholar 

  77. E. Aprile (XENON1T Collaboration), “The XENON1T dark matter search experiment,” Springer Proc. Phys. C12-02-22, 93–96 (2013), (arXiv:1206.6288).

    Google Scholar 

  78. E. Aprile et al. (XENON Collaboration), “Lowering the radioactivity of the photomultiplier tubes for the XENON1T dark matter experiment:” arXiv:1503.0769 [astro-ph.CO].

  79. G. Angloher, M. Bauer, I. Bavykina, A. Bento, C. Bucci et al. (CRESST Collaboration), “Results from 730 kg days of the CRESST-II dark matter search,” Eur. Phys. J. C 72, 1971 (2012), (arXiv:1109.0702).

    Article  ADS  Google Scholar 

  80. G. Angloher et al. (CRESST Collaboration), “Probing low WIMP masses with the next generation of CRESST detector:” arXiv:1503.0806 [astro-ph.CO].

  81. R. Agnese et al. (CDMS Collaboration), “Silicon detector dark matter results from the final exposure of CDMS II,” Phys. Rev. Lett. 111 (25), 251301 (2013), (arXiv:1304.4279).

    Article  ADS  Google Scholar 

  82. R. Agnese et al. (SuperCDMS Collaboration), “Search for low-mass weakly interacting massive particles with SuperCDMS,” Phys. Rev. Lett. 112 (24), 241302 (2014), (arXiv:1402.7137).

    Article  ADS  Google Scholar 

  83. R. Agnese, A. Anderson, M. Asai, D. Balakishiyeva, D. Barker et al. (CDMS Collaboration), “Improved WIMP-search reach of the CDMS II Germanium data:” arXiv:1504.0587 [astro-ph.CO].

  84. C. Aalseth, P. Barbeau, J. Colaresi, J. D. Leon, J. Fast et al. (CoGeNT Collaboration), “Maximum likelihood signal extraction method applied to 3.4 years of CoGeNT data:” arXiv:1401.6234 [astro-ph.CO].

  85. R. Bernabei et al. (DAMA Collaboration), “First results from DAMA/LIBRA and the combined results with DAMA/NaI,” Eur. Phys. J. C 56, 333–355 (2008), (arXiv:0804.2741).

    Article  ADS  Google Scholar 

  86. D. D’Angelo (DarkSide Collaboration), “Dark-Side50 results from first argon run:” arXiv:1501.0354 [astro-ph.CO].

  87. S. Archambault et al. (PICASSO Collaboration), “Constraints on low-mass WIMP interactions on from PICASSO,” Phys. Lett. B 711, 153–161 (2012), (arXiv:1202.1240).

    Article  ADS  Google Scholar 

  88. S. Desai et al. (Super-Kamiokande Collaboration), “Search for dark matter WIMPs using upward through-going muons in super-kamiokande,” Phys. Rev. D 70, 083523 (2004), (arXiv:hep-ex/0404025).

    Article  ADS  Google Scholar 

  89. R. Abbasi et al. (ICECUBE Collaboration), “Limits on a muon flux from neutralino annihilations in the Sun with the IceCube 22-string detector,” Phys. Rev. Lett. 102, 201302 (2009), (arXiv:0902.2460).

    Article  ADS  Google Scholar 

  90. E. Behnke, J. Behnke, S. Brice, D. Broemmelsiek, J. Collar et al. (COUPP Collaboration), “Improved limits on spin-dependent WIMP-proton interactions from a two liter CF I bubble chamber,” Phys. Rev. Lett. 106, 021303 (2011), (arXiv:1008.3518).

    Article  ADS  Google Scholar 

  91. M. Felizardo, T. Girard, T. Morlat, A. Fernandes, A. Ramos et al. (SIMPLE Collaboration), “Final analysis and results of the phase II SIMPLE dark matter search,” Phys. Rev. Lett. 108, 201302 (2012), (arXiv:1106.3014).

    Article  ADS  Google Scholar 

  92. X.-J. Bi, P.-F. Yin, and Q. Yuan, “Status of dark matter detection,” Front. Phys. China 8, 794–827 (2013), (arXiv:1409.4590). 19F 3

    ADS  Google Scholar 

  93. J. Engel, S. Pittel, and P. Vogel, “Nuclear physics of dark matter detection,” Int. J. Mod. Phys. E 1, 1–37 (1992).

    Article  ADS  Google Scholar 

  94. M. T. Ressell, M. B. Aufderheide, S. D. Bloom, K. Griest, G. J. Mathews, et al., “Nuclear shell model calculations of neutralino—nucleus cross-sections for Si-29 and Ge-73,” Phys. Rev. D 48, 5519–5535 (1993).

    Article  ADS  Google Scholar 

  95. R. Bernabei et al. (DAMA Collaboration), “Dark matter search,” Riv. Nuovo Cim. 26, 1–73 (2003), (astro-ph/0307403astro-ph/0307403).

    ADS  MATH  Google Scholar 

  96. M. Ressell and D. Dean, Spin dependent neutralino— nucleus scattering for a approximately 127 nuclei, Phys. Rev. C 56, 535–546 (1997), (arXiv:hep-ph/9702290).

    Article  ADS  Google Scholar 

  97. V. Bednyakov and F. Simkovic, “Nuclear spin structure in dark matter search: The zero momentum transfer limit,” Phys. Part. Nucl. 36, 131–152 (2005), (arXiv:hep-ph/0406218).

    Google Scholar 

  98. V. Bednyakov and F. Simkovic, “Nuclear spin structure in dark matter search: The finite momentum transfer limit,” Phys. Part. Nucl. 37, S106–S128 (2006), (arXiv:hep-ph/0608097).

    Article  Google Scholar 

  99. V. A. Bednyakov and H. V. Klapdor-Kleingrothaus, “On dark matter search after DAMA with Ge-73,” Phys. Rev. D 70, 096006 (2004), (arXiv:hep-ph/0404102).

    Article  ADS  Google Scholar 

  100. K. Freese, J. A. Frieman, and A. Gould, “Signal modulation in cold dark matter detection,” Phys. Rev. D 37, 3388 (1988).

    Article  ADS  Google Scholar 

  101. K. Schneck et al. (SuperCDMS Collaboration), “Dark matter effective field theory scattering in direct detection experiments:” arXiv:1503.0337 [astro-ph.CO]).

  102. N. Spooner, “Direct dark matter searches,” J. Phys. Soc. Jap. 76, 111016 (2007), (5arXiv:0705.3345).

    Article  ADS  Google Scholar 

  103. R. Catena and P. Gondolo, “Global limits and interference patterns in dark matter direct detection:” arXiv:1504.0655 [astro-ph.CO].

  104. V. Bednyakov and H. Klapdor-Kleingrothaus, “Direct search for dark matter—striking the balance—and the future,” Phys. Part. Nucl. 40, 583–611 (2009), (arXiv:0806.3917).

    Article  Google Scholar 

  105. K. Freese, M. Lisanti, and C. Savage, “Colloquium: Annual modulation of dark matter,” Rev. Mod. Phys. 85, 1561–1581 (2013), (arXiv:1209.3339).

    Article  ADS  Google Scholar 

  106. V. Bednyakov and H. Klapdor-Kleingrothaus, “Possibilities of directly detecting dark-matter particles in the next-to-minimal supersymmetric standard model,” Phys. Atom. Nucl. 62, 966–974 (1999).

    ADS  Google Scholar 

  107. E. Del Nobile, G. B. Gelmini, S. J. Witte, “Target dependence of the annual modulation in direct dark matter searches:” arXiv:1504.0677 [astro-ph.CO].

  108. P. Belli, R. Bernabei, A. Bottino, F. Cappella, R. Cerulli et al. (DAMA Collaboration), “Observations of annual modulation in direct detection of relic particles and light neutralinos,” Phys. Rev. D 84, 055014 (2011), (arXiv:1106.4667).

    Article  ADS  Google Scholar 

  109. J. D. Vergados, “Theoretical directional and modulated rates for direct SUSY dark matter detection,” Phys. Rev. D 67, 103003 (2003), (arXiv:hep-ph/0303231).

    Article  ADS  Google Scholar 

  110. B. Morgan, A. M. Green, and N. J. C. Spooner, “Directional statistics for WIMP direct detection,” Phys. Rev. D 71, 103507 (2005), (arXiv:astro-ph/0408047).

    Article  ADS  Google Scholar 

  111. G. Mohlabeng, K. Kong, J. Li, A. Para, and J. Yoo, “Dark matter directionality revisited with a high pressure xenon gas detector:” arXiv:1503.0393.

  112. V. A. Bednyakov, H. V. Klapdor-Kleingrothaus, and I. V. Krivosheina, “New constraints on spin-dependent WIMP-neutron interactions from HDMS with natural Ge and Ge-73,” Phys. Atom. Nucl. 71, 111–116 (2008).

    Article  ADS  Google Scholar 

  113. J. D. Vergados, “Direct SUSY dark matter detection: Theoretical rates due to the spin,” J. Phys. G 30, 1127–1144 (2004), (hep-pharXiv:hep-ph/0406134).

    Article  ADS  Google Scholar 

  114. V. Bednyakov, “One needs positive signatures for detection of dark matter,” Phys. Part. Nucl. 44, 220–228 (2013), (arXiv:1207.2899).

    Article  Google Scholar 

  115. A. Gutlein, G. Angloher, A. Bento, C. Bucci, L. Canonica et al. (CRESST-II Collaboration), “Impact of coherent neutrino nucleus scattering on direct dark matter searches based on CaWO4 crystals:” arXiv:1408.2357 [astro-ph.CO].

  116. R. Bernabei, “Dark matter particles in the Galactic Halo,” Physics 15, 10 (2014), (arXiv:1412.6524).

    Google Scholar 

  117. R. Bernabei, P. Belli, F. Cappella, V. Caracciolo, S. Castellano et al. (DAMA Collaboration), “Final model independent result of DAMA/LIBRA-phase1,” Eur. Phys. J. C 73 (12), 2648 (2013), (arXiv:1308.5109).

    Article  ADS  Google Scholar 

  118. C. Aalseth, P. Barbeau, J. Colaresi, J. Collar, J. Diaz Leon et al. (CoGeNT Collaboration), “Search for an annual modulation in a P-type point contact germanium dark matter detector,” Phys. Rev. Lett. 107, 141301 (2011), (arXiv:1106.0650 [astro-ph.CO]).

    Article  ADS  Google Scholar 

  119. C. Aalseth et al. (CoGeNT Collaboration), “CoGeNT: A search for low-mass dark matter using p-type point contact germanium detectors,” Phys. Rev. D 88 (1), 012002 (2013), (arXiv:1208.5737).

    Article  ADS  Google Scholar 

  120. A. Berlin, T. Lin, M. Low, and L.-T. Wang, “Neutralinos in vector boson fusion at high energy colliders:” arXiv:1502.0504 [astro-ph.CO].

  121. V. Bednyakov and H. Klapdor-Kleingrothaus, “SUSY spectrum constraints on direct dark matter detection,” Phys. Rev. D 62, 043524 (2000), (arXiv:hep-ph/9908427).

    Article  ADS  Google Scholar 

  122. V. Bednyakov, H. Klapdor-Kleingrothaus, and H. Tu, “Higgs bosons and the indirect search for WIMPs,” Phys. Rev. D 64, 075004 (2001), (arXiv:hepph/0101223).

    Article  ADS  Google Scholar 

  123. V. A. Bednyakov, Yu. A. Budagov, A. V. Gladyshev, D. I. Kazakov, E. V. Khramov, and D. I. Khubua, “On the LHC observation of gluinos from the egret-preferred region,” Phys. Atom. Nucl. 72, 619–637 (2009).

    Article  ADS  Google Scholar 

  124. T. Eifert (ATLAS Collaboration), “Searches for supersymmetry at the LHC and its dark datter candidate”, EAS Publications Series, 36, 203–209 (2009).

    Article  Google Scholar 

  125. G. Polesello and D. Tovey, “Constraining SUSY dark matter with the ATLAS detector at the LHC,” JHEP 0405, 071 (2004), (arXiv:hep-ph/0403047).

    Article  ADS  Google Scholar 

  126. E. Barberio (ATLAS Collaboration), “SUSY searches at LHC and dark matter”.

  127. A. Ismail, Dark matter complementarity in the phenomenological MSSM, Proceedings of AIP Conf., 2014, vol. 1604, pp. 53–65.

    Article  ADS  Google Scholar 

  128. L. Roszkowski, E. M. Sessolo, and A. J. Williams, “Prospects for dark matter searches in the pMSSM,” JHEP 1502, 014 (2015), (arXiv:1411.5214 [astro-ph.CO]).

    Article  ADS  Google Scholar 

  129. M. E. C. Catalan, S. Ando, C. Weniger, and F. Zandanel, “Indirect and direct detection prospect for TeV dark matter in the MSSM-9:” arXiv:1503.0059 [astro-ph.CO].

  130. L. Aparicio, M. Cicoli, B. Dutta, S. Krippendorf, A.Maharana, F. Muia, and F. Quevedo, “Non-thermal CMSSM with a 125 GeV Higgs:” arXiv:1502.05672 [hep-ph].

  131. K. Kowalska, L. Roszkowski, E. M. Sessolo, and A. J.Williams, “GUT-inspired SUSY and the muon g-2 anomaly: Prospects for LHC 14 TeV:” arXiv:1503.08219 [hep-ph].

  132. A. Achterberg, S. Caron, L. Hendriks, R. Ruiz de Austri, and C. Weniger, “A description of the galactic center excess in the minimal supersymmetric standard model and the dark matter signatures for the LHC and direct and indirect detection experiments:” arXiv:1502.0570 [astro-ph.CO].

  133. C. Han, D. Kim, S. Munir, and M. Park, “ (1) GeV dark matter in SUSY and a very light pseudoscalar at the LHC:” arXiv:1504.0508 [astro-ph.CO].

  134. T. Gherghetta, B. von Harling, A. D. Medina, M. A. Schmidt, and T. Trott, “SUSY implications from WIMP annihilation into scalars at the galactic centre:” arXiv:1502.0717 [astro-ph.CO].

  135. C. Arina, M. E. C. Catalan, S. Kraml, S. Kulkarni, and U. Laa, “Constraints on sneutrino dark matter from LHC run 1:” arXiv:1503.02960 [hep-ph].

  136. H. An, P. B. Dev, Y. Cai, and R. Mohapatra, “Sneutrino dark matter in gauged inverse seesaw models for neutrinos,” Phys. Rev. Lett. 108, 081806 (2012), (arXiv:1110.1366).

    Article  ADS  Google Scholar 

  137. P. Bhupal Dev, S. Mondal, B. Mukhopadhyaya, and S. Roy, “Phenomenology of light Sneutrino dark matter in cMSSM/mSUGRA with inverse seesaw,” JHEP 1209, 110 (2012), (arXiv:1207.6542).

    ADS  Google Scholar 

  138. S. Banerjee, P. S. B. Dev, S. Mondal, B. Mukhopadhyaya, and S. Roy, Invisible Higgs decay in a supersymmetric inverse seesaw model with light Sneutrino dark matter, JHEP 1310, 221 (2013), (arXiv:1306.2143).

    Article  ADS  Google Scholar 

  139. M. Kakizaki, E.-K. Park, J.-H. Park, and A. Santa, “Phenomenological constraints on light mixed Sneutrino dark matter scenarios:” arXiv:1503.0678 [astro-ph.CO].

  140. D. Barducci, A. Belyaev, A. K. M. Bharucha, W. Porod, and V. Sanz, “Uncovering natural supersymmetry via the interplay between the LHC and direct dark matter detection:” arXiv:1504.0247 [astro-ph.CO].

  141. S. Akula, D. Feldman, Z. Liu, P. Nath, and G. Peim, “New constraints on dark matter from CMS and ATLAS data,” Mod. Phys. Lett. A 26, 1521–1535 (2011), (arXiv:1103.5061).

    Article  ADS  MATH  Google Scholar 

  142. P. Nath, “Supersymmetry after the Higgs:” arXiv:1501.0167.

  143. J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T. M. P. Tait, and H.-B. Yu, “Constraints on light majorana dark matter from colliders,” Phys. Lett. B 695, 185–188 (2011), (arXiv:1005.1286).

    Article  ADS  Google Scholar 

  144. Y. Bai, P. J. Fox, and R. Harnik, “The tevatron at the frontier of dark matter direct detection,” JHEP 1012, 048 (2010), (arXiv:1005.3797).

    Article  ADS  Google Scholar 

  145. J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T. M. P. Tait, and H.-B. Yu, “Constraints on dark matter from colliders,” Phys. Rev. D 82, 116010 (2010), (arXiv:1008.1783).

    Article  ADS  Google Scholar 

  146. P. J. Fox, R. Harnik, J. Kopp, and Y. Tsai, “Missing energy signatures of dark matter at the LHC,” Phys. Rev. D 85, 056011 (2012), (arXiv:1109.4398).

    Article  ADS  Google Scholar 

  147. G. Busoni, “Limitation of EFT for DM interactions at the LHC,” PoS DIS 2014, 134 (2014), (arXiv:1411.3600).

    Google Scholar 

  148. G. Busoni, A. De Simone, E. Morgante, and A. Riotto, “On the validity of the effective field theory for dark matter searches at the LHC,” Phys. Lett. B 728, 412–421 (2014), (arXiv:1307.2253).

    Article  ADS  Google Scholar 

  149. S. Lowette (CMS Collaboration), “Search for dark matter at CMS:” arXiv:1410.3762 [astro-ph.CO].

  150. V. A. Mitsou, “Overview of searches for dark matter at the LHC:” arXiv:1402.3673 [astro-ph.CO].

  151. G. Aad et al. (ATLAS Collaboration), “Search for dark matter candidates and large extra dimensions in events with a jet and missing transverse momentum with the ATLAS detector,” JHEP 1304, 075 (2013), (arXiv:1210.4491).

    Article  ADS  Google Scholar 

  152. T. Aaltonen et al. (CDF Collaboration), “Search for large extra dimensions in final states containing one photon or jet and large missing transverse energy produced in collisions at = 1.96-TeV,” Phys. Rev. Lett. 101, 181602 (2008), (arXiv:0807.3132).

    Article  ADS  Google Scholar 

  153. G. Aad et al. (ATLAS Collaboration), “Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at TeV with the ATLAS detector:” arXiv:1502.0151.

  154. G. Angloher, S. Cooper, R. Keeling, H. Kraus, J. Marchese et al. (CRESST Collaboration), “Limits on WIMP dark matter using sapphire cryogenic detectors,” Astropart. Phys. 18, 43–55 (2002).

    Article  ADS  Google Scholar 

  155. Z. Ahmed et al. (CDMS-II Collaboration), “Dark matter search results from the CDMS II experiment,” Science 327, 1619–1621 (2010), (arXiv:0912.3592).

    Article  ADS  Google Scholar 

  156. J. Angle et al. (XENON Collaboration), First results from the XENON10 dark matter experiment at the Gran Sasso national laboratory, Phys. Rev. Lett. 100, 021303 (2008), (arXiv:0706.0039).

    Article  ADS  Google Scholar 

  157. C. Aalseth et al. (CoGeNT Collaboration), “Results from a search for light-mass dark matter with a P-type point contact germanium detector,” Phys. Rev. Lett. 106, 131301 (2011), (arXiv:1002.4703).

    Article  ADS  Google Scholar 

  158. E. Aprile et al. (XENON100 Collaboration), “First dark matter results from the XENON100 experiment,” Phys. Rev. Lett. 105, 131302 (2010), (arXiv:1005.0380).

    Article  ADS  Google Scholar 

  159. D. Akerib, M. Attisha, C. Bailey, L. Baudis, D. A. Bauer et al. (SuperCDMS Collaboration), “The Super-CDMS proposal for dark matter detection,” Nucl. Instrum. Meth. A 559, 411–413 (2006).

    Article  ADS  Google Scholar 

  160. E. Aprile and L. Baudis (XENON100 Collaboration), “Status and sensitivity projections for the XENON100 dark matter experiment,” PoS IDM 2008, 018 (2008),(arXiv:0902.4253).

    Google Scholar 

  161. S. Archambault, F. Aubin, M. Auger, E. Behnke, B. Beltran et al. (PICASSO Collaboration), “Dark matter spin-dependent limits for WIMP interactions pp s s = 8 on F-19 by PICASSO,” Phys. Lett. B 682, 185–192 (2009), (arXiv:0907.0307).

    Article  ADS  Google Scholar 

  162. H. Lee et al. (KIMS Collaboration), “Limits on WIMP-nucleon cross section with CsI(Tl) crystal detectors,” Phys. Rev. Lett. 99, 091301 (2007), (arXiv:0704.0423).

    Article  ADS  Google Scholar 

  163. G. Sciolla, J. Battat, T. Caldwell, D. Dujmic, P. Fisher et al. (DMTPC Collaboration), “The DMTPC project,” J. Phys. Conf. Ser. 179, 012009 (2009), (arXiv:0903.3895).

    Article  ADS  Google Scholar 

  164. J. Gramling, “Probing dark matter with Monojets in ATLAS at the LHC,” PoS Corfu 2012, 058 (2013).

    Google Scholar 

  165. E. Diehl (ATLAS Collaboration), “The search for dark matter using monojets and monophotons with the ATLAS detector,” Proceedings of AIP Conf., 1604, 324–330 (2014).

    Article  ADS  Google Scholar 

  166. G. Aad et al. (ATLAS Collaboration), “Search for dark matter candidates and large extra dimensions in events with a photon and missing transverse momentum in collision data at TeV with the ATLAS detector,” Phys. Rev. Lett. 110, 011802 (2013), (arXiv:1209.4625).

    Article  ADS  Google Scholar 

  167. S. Chatrchyan et al. (CMS Collaboration), “Search for dark matter and large extra dimensions in pp collisions yielding a photon and missing transverse energy,” Phys. Rev. Lett. 108, 261803 (2012), (arXiv:1204.0821).

    Article  ADS  Google Scholar 

  168. S. Chatrchyan et al. (CMS Collaboration), “Search for new physics with a mono-jet and missing transverse energy in collisions at TeV,” Phys. Rev. Lett. 107, 201804 (2011) (arXiv:1106.4775).

    Article  ADS  Google Scholar 

  169. G. Aad et al. (ATLAS Collaboration), Search for dark matter in events with a hadronically decaying W or Z Boson and missing transverse momentum in collisions at 8 TeV with the ATLAS detector, Phys. Rev. Lett. 112 (4), 041802 (2014), (arXiv:1309.4017).

    Article  ADS  Google Scholar 

  170. Y. Bai and T. M. Tait, “Searches with mono-leptons,” Phys. Lett. B 723, 384–387 (2013), (arXiv:1208.4361).

    Article  ADS  Google Scholar 

  171. Z. Ahmed et al. (CDMS-II Collaboration), “Results from a low-energy analysis of the CDMS II germanium data,” Phys. Rev. Lett. 106, 131302 (2011) (arXiv:1011.2482).

    Article  ADS  Google Scholar 

  172. M. Aartsen et al. (IceCube Collaboration), “Search for dark matter annihilations in the Sun with the 79-string IceCube detector,” Phys. Rev. Lett. 110, 131302 (2013), (arXiv:1212.4097).

    Article  ADS  Google Scholar 

  173. E. Behnke et al. (COUPP Collaboration), First dark matter search results from a 4-kg CF3I bubble chamber operated in a deep underground site, Phys. Rev. D 86, 052001 (2012), (arXiv:1204.3094).

    Article  ADS  Google Scholar 

  174. G. Aad et al. (ATLAS Collaboration), “Search for invisible decays of a Higgs boson produced in association with a Z boson in ATLAS,” Phys. Rev. Lett. 112, 201802 (2014), (arXiv:1402.3244).

    Article  ADS  Google Scholar 

  175. S. Heinemeyer et al. (LHC Higgs Cross Section Working Group Collaboration), Handbook of LHC Higgs Cross Sections: 3. Higgs Properties; arXiv:1307.1347.

  176. S. Kanemura, S. Matsumoto, T. Nabeshima, and N. Okada, “Can WIMP dark matter overcome the nightmare scenario?,” Phys. Rev. D 82, 055026 (2010), (arXiv:1005.5651).

    Article  ADS  Google Scholar 

  177. A. Djouadi, O. Lebedev, Y. Mambrini, and J. Quevillon, “Implications of LHC searches for Higgs—portal dark matter,” Phys. Lett. B 709, 65–69 (2012), (arXiv:1112.3299).

    Article  ADS  Google Scholar 

  178. J. Angle et al. (XENON10 Collaboration), “A search for light dark matter in XENON10 data,” Phys. Rev. Lett. 107, 051301 (2011), (arXiv:1104.3088).

    Article  ADS  Google Scholar 

  179. P. J. Fox, J. Kopp, M. Lisanti, and N. Weiner, “A CoGeNT modulation analysis,” Phys. Rev. D 85, 036008 (2012), (arXiv:1107.0717).

    Article  ADS  Google Scholar 

  180. R. Agnese et al. (SuperCDMS Collaboration), “Search for low-mass weakly interacting massive particles using voltage-assisted calorimetric ionization detection in the SuperCDMS experiment,” Phys. Rev. Lett. 112, 041302 (2014), (arXiv:1309.3259).

    Article  ADS  Google Scholar 

  181. G. Aad et al. (ATLAS Collaboration), “Search for dark matter in events with a Z boson and missing transverse momentum in pp collisions at = 8 TeV with the ATLAS detector,” Phys. Rev. D 90, 012004 (2014), (arXiv:1404.0051).

    Article  ADS  Google Scholar 

  182. N. F. Bell, J. B. Dent, A. J. Galea, T. D. Jacques, L. M. Krauss, and T. J. Weiler, “Searching for dark matter at the LHC with a mono-Z,” Phys. Rev. D 86, 096011 (2012), (arXiv:1209.0231).

    Article  ADS  Google Scholar 

  183. G. Aad et al. (ATLAS Collaboration), “Search for dark matter in events with heavy quarks and missing transverse momentum in collisions with the ATLAS detector:” arXiv:1410.4031.

  184. C. Rogan, “Kinematical variables towards new dynamics at the LHC:” arXiv:1006.2727.

  185. P. Agrawal, B. Batell, D. Hooper, and T. Lin, “Flavored dark matter and the Galactic center gamma-ray excess,” Phys. Rev. D 90, 063512 (2014), (arXiv:1404.1373).

    Article  ADS  Google Scholar 

  186. G. Aad et al. (ATLAS Collaboration), “Search for new phenomena in events with a photon and missing transverse momentum in collisions at TeV with the ATLAS detector,” Phys. Rev. D 91, 012008 (2015), (arXiv:1411.1559).

    Article  ADS  Google Scholar 

  187. A. Nelson, L. M. Carpenter, R. Cotta, A. Johnstone, and D. Whiteson, “Confronting the Fermi line with LHC data: An effective theory of dark matter interaction with photons,” Phys. Rev. D 89, 056011 (2014), (arXiv:1307.5064).

    Article  ADS  Google Scholar 

  188. C. Weniger, “A tentative gamma-ray line from dark matter annihilation at the Fermi large area telescope,” JCAP 1208, 007 (2012), (arXiv:1204.2797).

    Article  ADS  Google Scholar 

  189. E. Komatsu et al. (WMAP Collaboration), “Sevenyear Wilkinson microwave anisotropy probe (WMAP) observations: Cosmological interpretation,” Astrophys. J. Suppl. 192, 18 (2011), (arXiv:1001.4538).

    Article  ADS  Google Scholar 

  190. G. Aad et al. (ATLAS Collaboration), “Search for new particles in events with one lepton and missing transverse momentum in collisions at = 8 TeV with the ATLAS detector,” JHEP 1409, 037 (2014), (arXiv:1407.7494).

    Article  ADS  Google Scholar 

  191. M. Chizhov and G. Dvali, “Origin and phenomenology of weak-doublet spin-1 bosons,” Phys. Lett. B 703, 593–598 (2011), (arXiv:0908.0924).

    Article  ADS  Google Scholar 

  192. M. Chizhov, V. Bednyakov, and J. Budagov, “Proposal for chiral bosons search at LHC via their unique new s pp pp s = 8 pp s signature,” Phys. Atom. Nucl. 71, 2096–2100 (2008), (arXiv:0801.4235).

    Article  ADS  Google Scholar 

  193. V. Abazov et al. (D0 Collaboration), “Search for large extra dimensions via single photon plus missing energy final states at = 1.96-TeV,” Phys. Rev. Lett. 101, 011601 (2008), (arXiv:0803.2137).

    Article  ADS  Google Scholar 

  194. T. Aaltonen et al. (CDF Collaboration), “A search for dark matter in events with one jet and missing transverse energy in collisions at TeV,” Phys. Rev. Lett. 108, 211804 (2012), (arXiv:1203.0742).

    Article  ADS  Google Scholar 

  195. S. Chatrchyan et al. (CMS Collaboration), “Search for dark matter and large extra dimensions in monojet events in collisions at TeV,” JHEP 1209, 094 (2012), (arXiv:1206.5663).

    Article  ADS  Google Scholar 

  196. G. Aad et al. (ATLAS Collaboration), “Search for new phenomena with the monojet and missing transverse momentum signature using the ATLAS detector in TeV proton-proton collisions,” Phys. Lett. B 705, 294–312 (2011), (arXiv:1106.5327).

    Article  ADS  Google Scholar 

  197. V. Khachatryan et al. (CMS Collaboration), “Search for dark matter, extra dimensions, and unparticles in monojet events in proton-proton collisions at = 8 TeV:” arXiv:1408.3583.

  198. V. Khachatryan et al. (CMS Collaboration), “Search for physics beyond the standard model in final states with a lepton and missing transverse energy in proton-proton collisions at = 8 TeV:” arXiv:1408.2745 [hep-ex].

  199. A. L. Read, “Presentation of search results: The CL(s) technique,” J. Phys. G 28, 2693–2704 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  200. G. Steigman and M. S. Turner, “Cosmological constraints on the properties of weakly interacting massive particles,” Nucl. Phys. B 253, 375 (1985).

    Article  ADS  Google Scholar 

  201. G. Hinshaw et al. (WMAP Collaboration), “Nine-year wilkinson microwave anisotropy probe (WMAP) observations: Cosmological parameter results,” Astrophys. J. Suppl. 208, 19 (2013), (arXiv:1212.5226).

    Article  ADS  Google Scholar 

  202. M. Ackermann et al. (Fermi-LAT Collaboration), “Dark matter constraints from observations of 25 Milky Way satellite galaxies with the Fermi large area telescope,” Phys. Rev. D 89, 042001 (2014), (arXiv:1310.0828).

    Article  ADS  Google Scholar 

  203. A. Abramowski et al. (HESS Collaboration), “Search for a dark matter annihilation signal from the Galactic Center Halo with H.E.S.S,” Phys. Rev. Lett. 106, 161301 (2011), (arXiv:1103.3266).

    Article  ADS  Google Scholar 

  204. P. Ade et al. (Planck Collaboration), “Planck 2013 results. XVI. Cosmological parameters,” Astron. Astrophys. 571, A16 (2014), (arXiv:1303.5076).

    Article  Google Scholar 

  205. F. Bishara, J. Brod, P. Uttayarat, and J. Zupan, “Nonstandard Yukawa couplings and Higgs portal dark matter:” arXiv:1504.04022 [hep-ph].

  206. M. Dutra, C. A. d.S. Pires, and P. S. R. da Silva, “Majorana dark matter in minimal Higgs portal models after LUX:” arXiv:1504.0722.

  207. M. A. Fedderke, J.-Y. Chen, E. W. Kolb, and L.-T. Wang, The fermionic dark matter Higgs portal: An effective field theory approach, JHEP 1408, 122 (2014), (arXiv:1404.2283).

    Article  ADS  Google Scholar 

  208. S. Chatrchyan et al. (CMS Collaboration), “Search for invisible decays of Higgs bosons in the vector boson fusion and associated ZH production modes,” Eur. Phys. J. C 74, 2980 (2014), (arXiv:1404.1344).

    Article  ADS  Google Scholar 

  209. G. Aad et al. (ATLAS Collaboration), “Search for invisible decays of the Higgs boson produced in association with a Hadronically decaying vector boson in collisions at = 8 TeV with the ATLAS setector:” arXiv:1504.0432.

  210. V. Khachatryan et al. (CMS Collaboration), “Search for the production of dark matter in association with topquark pairs in the single-lepton final state in proton-proton collisions at sqrt(s) = 8 TeV:” arXiv:1504.0319.

  211. A. De Simone, G. F. Giudice, and A. Strumia, Benchmarks for dark matter searches at the LHC, JHEP 1406, 081 (2014), (arXiv:1402.6287).

    Article  ADS  Google Scholar 

  212. N. Fernandez, J. Kumar, I. Seong, and P. Stengel, “Complementary constraints on light dark matter from heavy quarkonium decays,” Phys. Rev. D 90, 015029 (2014), (arXiv:1404.6599).

    Article  ADS  Google Scholar 

  213. E. Goudzovski (NA48/2 Collaboration), “Search for the dark photon in decays by the NA48/2 experiment at CERN:” arXiv:1412.8053.

  214. J. R. Batley et al. (NA48/2 Collaboration), “Search for the dark photon in decays,” Phys. Lett. B 746, 178–185 (2015), (arXiv:1504.00607).

    Article  ADS  Google Scholar 

  215. J. Lees et al. (BaBar Collaboration), “Search for a dark photon in collisions a BaBar,” Phys. Rev. Lett. 113, 201801 (2014), (arXiv:1406.2980).

    Article  ADS  Google Scholar 

  216. G. Bennett et al. (Muon g-2 Collaboration), Final report of the Muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev. D 73, 072003 (2006), (arXiv:hep-ex/0602035).

    Article  ADS  Google Scholar 

  217. G. Eigen (BaBar Collaboration), “Direct searches for new physics particles at BABAR:” arXiv:1503.0286.

  218. B. Echenard, R. Essig, and Y.-M. Zhong, “Projections for dark photon searches at Mu3e:” arXiv:1411.1770.

  219. N. Arkani-Hamed, D. P. Finkbeiner, T. R. Slatyer, and N. Weiner, “A theory of dark matter,” Phys. Rev. D 79, 015014 (2009). (arXiv:0810.0713).

    Article  ADS  Google Scholar 

  220. C. Cheung, J. T. Ruderman, L.-T. Wang, and I. Yavin, “Lepton jets in (supersymmetric) electroweak processes,” JHEP 1004, 116 (2010), (arXiv:0909.0290).

    Article  ADS  MATH  Google Scholar 

  221. R. Foot and S. Vagnozzi, “Dissipative hidden sector dark matter,” Phys. Rev. D 91, 023512 (2015), (arXiv:1409.7174).

    Article  ADS  Google Scholar 

  222. R. Foot and S. Vagnozzi, “Diurnal modulation signal from dissipative hidden sector dark matter:” arXiv:1412.0762.

  223. K. Kong, H.-S. Lee, and M. Park, “Charged Higgs probes of dark bosons at the LHC:” arXiv:1408.4021.

  224. K. Kong, H.-S. Lee, and M. Park, “Dark decay of the top quark,” Phys. Rev. D 89, 074007 (2014), (arXiv:1401.5020).

    Article  ADS  Google Scholar 

  225. H. Davoudiasl, W. J. Marciano, R. Ramos, and M. Sher, “Charged Higgs discovery in the W plus "dark” vector boson decay mode,” Phys. Rev. D 89, 115008 (2014), (arXiv:1401.2164).

    Article  ADS  Google Scholar 

  226. A. Gupta, R. Primulando, and P. Saraswat, “A new probe of dark sector dynamics at the LHC:” arXiv:1504.0138. pp s p0 p0 e+e-

  227. Y. Bai, J. Bourbeau, and T. Lin, “Dark matter searches with a mono-Z’ jet:” arXiv:1504.0139.

  228. M. Autran, K. Bauer, T. Lin, and D. Whiteson, “Mono-Z’: Searches for dark matter in events with a resonance and missing transverse energy:” arXiv:1504.01386 [hep-ph].

  229. H.-S. Lee, “Muon g-2 anomaly and dark leptonic gauge boson,” Phys. Rev. D 90, 091702 (2014), (arXiv:1408.4256).

    Article  ADS  Google Scholar 

  230. G. Agakishiev et al. (HADES Collaboration), “Searching a dark photon with HADES,” Phys. Lett. B 731, 265–271 (2014), (arXiv:1311.0216).

    Article  ADS  Google Scholar 

  231. D. Babusci et al. (KLOE-2 Collaboration), “Search for light vector boson production in interactions with the KLOE experiment,” Phys. Lett. B 736, 459–464 (2014), (arXiv:1404.7772).

    Article  ADS  Google Scholar 

  232. F. Xu, Dark implication for flavor physics:” arXiv:1504.07415 [hep-ph].

  233. B. Batell, R. Essig, and Z. Surujon, Strong constraints on sub-GeV dark sectors from SLAC beam dump E137, Phys. Rev. Lett. 113, 171802 (2014), (arXiv:1406.2698).

    Article  ADS  Google Scholar 

  234. S. Gninenko, N. Krasnikov, and V. Matveev, “The Muon g-2 and searches for a new electrophobic sub-GeV dark boson in a missing-energy experiment at CERN:,” arXiv:1412.1400 [hep-ph].

  235. D. Gorbunov, A. Makarov, I. Timiryasov, “Decaying light particles in the SHiP experiment: Signal rate estimates for Hidden photons,” Phys. Rev. D 91, 035027 (2015), (arXiv:1411.4007).

    Article  ADS  Google Scholar 

  236. S. Alekhin, W. Altmannshofer, T. Asaka, B. Batell, F. Bezrukov et al. (SHiP Collaboration), “A facility to search for hidden particles at the CERN SPS: The SHiP physics case:” arXiv:1504.04855 [hep-ph].

  237. D. Curtin, R. Essig, S. Gori, and J. Shelton, “Illuminating dark photons with high-energy Colliders,” JHEP 1502, 157 (2015), (arXiv:1412.0018).

    Article  ADS  Google Scholar 

  238. E. Izaguirre, G. Krnjaic, P. Schuster, and N. Toro, “Testing GeV-scale dark matter with fixed-target missing momentum experiments:” arXiv:1411.1404 [hep-ph].

  239. E. Izaguirre, G. Krnjaic, P. Schuster, and N. Toro, “New electron beam-dump experiments to search for MeV to few-GeV dark matter,” Phys. Rev. D 88, 114015 (2013), (arXiv:1307.6554).

    Article  ADS  Google Scholar 

  240. P. de Niverville, D. McKeen, and A. Ritz, “Signatures of sub-GeV dark matter beams at neutrino experiments,” Phys. Rev. D 86, 035022 (2012), (arXiv:1205.3499).

    Article  ADS  Google Scholar 

  241. M. D. Diamond and P. Schuster, Searching for light dark matter with the SLAC millicharge experiment, Phys. Rev. Lett. 111, 221803 (2013), (arXiv:1307.6861).

    Article  ADS  Google Scholar 

  242. M. Battaglieri et al. (BDX Collaboration), “Dark matter search in a Beam-Dump eXperiment (BDX) at Jefferson lab:” arXiv:1406.3028 [physics.ins-det].

  243. J. D. Bjorken, R. Essig, P. Schuster, and N. Toro, “New fixed-target experiments to search for dark gauge forces,” Phys. Rev. D 80, 075018 (2009), (arXiv:0906.0580).

    Article  ADS  Google Scholar 

  244. E. Izaguirre, G. Krnjaic, P. Schuster, and N. Toro, “Physics motivation for a pilot dark matter search at Jefferson laboratory,” Phys. Rev. D 90, 014052 (2014), (arXiv:1403.6826).

    Article  ADS  Google Scholar 

  245. J. Balewski, J. Bernauer, J. Bessuille, R. Corliss, R. Cowan et al. (DarkLight Collaboration), “The DarkLight experiment: A precision search for new physics at low energies:” arXiv:1412.4717 [physics.ins-det].

  246. H. An, M. Pospelov, J. Pradler, and A. Ritz, “Direct detection constraints on dark photon dark matter:” arXiv:1412.8378 [hep-ph].

  247. B. Dutta, “Dark matter searches at accelerator facilities:” arXiv:1403.6217 [hep-ph].

  248. P. J. Fox and E. Poppitz, “Leptophilic dark matter,” Phys. Rev. D 79, 083528 (2009), (arXiv:0811.0399).

    Article  ADS  Google Scholar 

  249. J. Kopp, V. Niro, T. Schwetz, and J. Zupan, “DAMA/LIBRA and leptonically interacting dark matter,” Phys. Rev. D 80, 083502 (2009), (arXiv:0907.3159).

    Article  ADS  Google Scholar 

  250. A. Freitas and S. Westhoff, “Leptophilic dark matter in lepton interactions at LEP and ILC,” JHEP 1410, 116 (2014), (arXiv:1408.1959).

    Article  ADS  Google Scholar 

  251. H. Dreiner, M. Huck, M. Kramer, D. Schmeier, and J. Tattersall, “Illuminating dark matter at the ILC,” Phys. Rev. D 87, 075015 (2013), (arXiv:1211.2254).

    Article  ADS  Google Scholar 

  252. F. Richard, G. Arcadi, and Y. Mambrini, “Search for dark matter at Colliders:” arXiv:1411.0088.

  253. T. Daylan, D. P. Finkbeiner, D. Hooper, T. Linden, S. K. N. Portillo, N. L. Rodd, and T. R. Slatyer, “The characterization of the gamma-ray signal from the central Milky Way: A compelling case for annihilating dark matter:” arXiv:1402.6703 [astro-ph].

  254. F. Calore, I. Cholis, and C. Weniger, “Background model systematics for the Fermi GeV excess:” arXiv:1409.0042 1409.0042.

  255. S. Biswas, E. Gabrielli, M. Heikinheimo, and B. Mele, Higgs-boson production in association with a dark photon in collisions:” arXiv:1503.05836 [hep-ph].

  256. T. Behnke, J. E. Brau, B. Foster, J. Fuster, M. Harrison et al. (ILC Design Working Group Collaboration), “The international linear collider technical design report—volume 1: Executive summary:” arXiv:1306.6327 [physics.acc-ph].

  257. M. Bicer et al. (TLEP Design Study Working Group Collaboration), “First look at the physics case of TLEP,” JHEP 1401, 164 (2014), (arXiv:1308.6176).

    Article  ADS  Google Scholar 

  258. M. Raggi, V. Kozhuharov, and P. Valente, “The PADME experiment at LNF:” arXiv:1501.01867 [hep-ex].

  259. M. Raggi and V. Kozhuharov, Proposal to search for a dark photon in positron on target collisions at DA NE linac, Adv. High Energy Phys. 2014, 959802 (2014), (arXiv:1403.3041).

    Article  Google Scholar 

  260. D. Babusci et al. (KLOE-2 Collaboration), “Search for dark Higgsstrahlung in and missing energy events with the KLOE experiment:” arXiv:1501.06795 [hep-ex].

  261. F. Curciarello (KLOE-2 Collaboration), “Dark forces at DA NE:” arXiv:1502.05517 [hep-ex].

  262. I. Jaegle (Belle Collaboration), “Search for the dark photon and the dark Higgs boson at belle:” arXiv:1502.00084 [hep-ex].

  263. R. Essig, J. Mardon, M. Papucci, T. Volansky, and Y.-M. Zhong, “Constraining light dark matter with e+e-F e+e-? µ+µ-F low-energy Colliders,” JHEP 1311, 167 (2013), (arXiv:1309.5084).

    Article  ADS  Google Scholar 

  264. N. Chen, J. Wang, and X.-P. Wang, The leptophilic dark matter with Z'interaction: From indirect searches to future Collider searches:” arXiv:1501.04486 [hep-ph].

  265. I. Hinchliffe, F. Paige, M. Shapiro, J. Soderqvist, and W. Yao, “Precision SUSY measurements at CERN LHC,” Phys. Rev. D 55, 5520–5540 (1997), (arXiv:hep-ph/9610544).

    Article  ADS  Google Scholar 

  266. B. Allanach, C. Lester, M. A. Parker, and B. Webber, “Measuring sparticle masses in nonuniversal string inspired models at the LHC,” JHEP 0009, 004 (2000), (arXiv:hep-ph/0007009).

    Article  ADS  Google Scholar 

  267. B. Gjelsten, D. Miller, and P. Osland, “Measurement of the gluino mass via cascade decays for SPS 1a,” JHEP 0506, 015 (2005), (arXiv:hep-ph/0501033).

    Article  ADS  Google Scholar 

  268. H.-C. Cheng, D. Engelhardt, J. F. Gunion, Z. Han, and B. McElrath, “Accurate mass determinations in decay chains with missing energy,” Phys. Rev. Lett. 100, 252001 (2008), (arXiv:0802.4290).

    Article  ADS  Google Scholar 

  269. H.-C. Cheng, J. F. Gunion, Z. Han, G. Marandella, and B. McElrath, “Mass determination in SUSY-like events with missing energy,” JHEP 0712, 076 (2007), (arXiv:0707.0030).

    Article  ADS  Google Scholar 

  270. K. Kawagoe, M. Nojiri, and G. Polesello, “A new SUSY mass reconstruction method at the CERN LHC,” Phys. Rev. D 71, 035008 (2005), (arXiv:hepph/0410160).

    Article  ADS  Google Scholar 

  271. C. Lester and D. Summers, “Measuring masses of semiinvisibly decaying particles pair produced at hadron colliders,” Phys. Lett. B 463, 99–103 (1999), (arXiv:hep-ph/9906349).

    Article  ADS  Google Scholar 

  272. M. M. Nojiri and M. Takeuchi, “Study of the top reconstruction in top-partner events at the LHC,” JHEP 0810, 025 (2008), (arXiv:0802.4142).

    Article  ADS  Google Scholar 

  273. W. S. Cho, K. Choi, Y. G. Kim, and C. B. Park, “Gluino stransverse mass,” Phys. Rev. Lett. 100, 171801 (2008), (arXiv:0709.0288).

    Article  ADS  Google Scholar 

  274. M. M. Nojiri, Y. Shimizu, S. Okada, and K. Kawagoe, “Inclusive transverse mass analysis for squark and gluino mass determination,” JHEP 0806, 035 (2008), (arXiv:0802.2412).

    Article  ADS  Google Scholar 

  275. J. Alwall, A. Freitas, and O. Mattelaer, “Measuring sparticles with the matrix element,” Proceedings of AIP Conf., 2010, vol. 1200, pp. 442–445, (arXiv:0910.2522).

    Article  ADS  Google Scholar 

  276. J. S. Gainer, J. Lykken, K. T. Matchev, S. Mrenna, and M. Park, “The matrix element method: past, present, and future:” arXiv:1307.3546 [hep-ph].

  277. T. Han, I.-W. Kim, and J. Song, “Kinematic cusps: Determining the missing particle mass at Colliders,” Phys. Lett. B 693, 575–579 (2010), (arXiv:0906.5009).

    Article  ADS  Google Scholar 

  278. H. Sun, “Dark matter searches in jet plus missing energy events in collisions at the CERN LHC,” Phys. Rev. D 90, 035018 (2014), (arXiv:1407.5356).

    Article  ADS  Google Scholar 

  279. S. Bilmis, I. Turan, T. Aliev, M. Deniz, L. Singh, and H. Wong, “Constraints on dark photon from neutrinoelectron scattering experiments:” arXiv:1502.07763 [hep-ph].

  280. V. Bednyakov and S. Kovalenko, “On possibility for dark matter search with accelerated beam of particles,” 1999, (unpublished).

    Google Scholar 

  281. T.-F. Feng, X.-Q. Li, W.-G. Ma, J.-X. Wang, and G.-B. Zhao, “Detecting the ambient neutralino dark matter particles at accelerator,” HEPNP 30, 12 (2006), (arXiv:hep-ph/0610396).

    Google Scholar 

  282. S. Assadi, C. Collins, P. McIntyre, J. Gerity, J. Kellams, T. Mann, C. Mathewson, N. Pogue, A. Sattarov, and R. York, “Higgs factory and 100 TeV hadron collider: Opportunity for a new world laboratory within a decade:” arXiv:1402.5973 [physics.acc-ph].

  283. S. Chattopadhyay, “Physics at FAIR,” Nucl. Phys. A 931, 267–276 (2014).

    Article  ADS  Google Scholar 

  284. V. Kekelidze, A. Kovalenko, R. Lednicky, V. Matveev, I. Meshkov et al. (NICA Collaboration), “Project NICA at JINR,” Nucl. Phys. A 904–905, 945c–948c (2013).

    Article  Google Scholar 

  285. R. Thornton (MiniBooNE Collaboration), “Accelerator-produced dark matter search using MiniBooNE:” arXiv:1411.4311 [hep-ex].

  286. D. E. Soper, M. Spannowsky, C. J. Wallace, and T. M. P. Tait, “Scattering of dark particles with light mediators,” Phys. Rev. D 90, 115005 (2014), (arXiv:1407.2623).

    Article  ADS  Google Scholar 

  287. B. Batell, M. Pospelov, and A. Ritz, “Exploring portals to a hidden sector through fixed targets,” Phys. Rev. D 80, 095024 (2009), (arXiv:0906.5614).

    Article  ADS  Google Scholar 

  288. R. Essig, R. Harnik, J. Kaplan, and N. Toro, “Discovering new light states at neutrino experiments,” Phys. Rev. D 82, 113008 (2010), (arXiv:1008.0636).

    Article  ADS  Google Scholar 

  289. B. Batell, M. Pospelov, and A. Ritz, “Probing a secluded U(1) at B-factories,” Phys. Rev. D 79, 115008 (2009), (arXiv:0903.0363).

    Article  ADS  Google Scholar 

  290. D. E. Morrissey and A. P. Spray, New limits on light hidden sectors from fixed-target experiments, JHEP 1406, 083 (2014), (arXiv:1402.4817).

    Article  ADS  Google Scholar 

  291. Y. Kahn, G. Krnjaic, J. Thaler, and M. Toups, “DAEdALUS and dark matter:” arXiv:1411.1055 [hep-ph].

  292. M. Wurm et al. (LENA Collaboration), “The nextgeneration liquid-scintillator neutrino observatory LENA,” Astropart. Phys. 35, 685–732 (2012), (arXiv:1104.5620).

    Article  ADS  Google Scholar 

  293. J. Berger, Y. Cui, and Y. Zhao, “Detecting boosted dark matter from the Sun with large volume neutrino detectors:” arXiv:1410.2246 [hep-ph].

  294. K. Kong, G. Mohlabeng, and J.-C. Park, “Boosted dark matter signals uplifted with self-interaction,” Phys. Lett. B 743, 256–266 (2015), (arXiv:1411.6632).

    Article  ADS  Google Scholar 

  295. Y. Fukuda et al. (Super-Kamiokande Collaboration), “The Super-Kamiokande detector,” Nucl. Instrum. Meth. A 501, 418–462 (2003).

    Article  ADS  Google Scholar 

  296. K. Abe, T. Abe, H. Aihara, Y. Fukuda, Y. Hayato et al. (Hyper-Kamiokande Collaboration), “Letter of intent: The Hyper-Kamiokande experiment—detector design and physics potential:” arXiv:1109.3262 [hep-ex].

  297. A. Badertscher, A. Curioni, U. Degunda, L. Epprecht, S. Horikawa et al. (GLACIER Collaboration), “Giant liquid argon observatory for proton decay, neutrino astrophysics and CP-violation in the lepton sector (GLACIER):” arXiv:1001.0076 [physics.ins-det].

  298. M. Aartsen et al. (IceCube PINGU Collaboration), “Letter of intent: The precision IceCube next generation upgrade (PINGU):” arXiv:1401.2046 [physics. ins-det].

  299. M. Ageron et al. (ANTARES Collaboration), “ANTARES: The first undersea neutrino telescope,” Nucl. Instrum. Meth. A 656, 11–38 (2011), (arXiv:1104.1607).

    Article  ADS  Google Scholar 

  300. A. Bueno, Z. Dai, Y. Ge, M. Laffranchi, A. J. Melgarejo, A. Meregaglia, S. Navas, and A. Rubbia, “Nucleon decay searches with large liquid argon TPC detectors at shallow depths: Atmospheric neutrinos and cosmogenic backgrounds,” JHEP 04, 041 (2007), (hep-pharXiv:hep-ph/0701101).

    Article  ADS  Google Scholar 

  301. A. Soffer, “Constraints on dark forces from the B factories and low-energy experiments:” arXiv:1409.5263 [hep-ex].

  302. O. Tajima et al. (Belle Collaboration), “Search for invisible decay of the upsilon(1S),” Phys. Rev. Lett. 98, 132001 (2007), (arXiv:hep-ex/0611041).

    Article  ADS  Google Scholar 

  303. B. Aubert et al. (BaBar Collaboration), “A search for invisible decays of the upsilon(1S),” Phys. Rev. Lett. 103, 251801 (2009), (arXiv:0908.2840).

    Article  ADS  Google Scholar 

  304. M. Ablikim et al. (BES Collaboration), “Search for the invisible decay of J in (2S),” Phys. Rev. Lett. 100, 192001 (2008), (arXiv:0710.0039).

    Article  ADS  Google Scholar 

  305. L. Chang, O. Lebedev, and J. Ng, “On the invisible decays of the upsilon and J resonances,” Phys. Lett. B 441, 419–424 (1998), (arXiv:hep-ph/9806487).

    Article  ADS  Google Scholar 

  306. C. Savage, G. Gelmini, P. Gondolo, and K. Freese, “Compatibility of DAMA/LIBRA dark matter detection with other searches,” JCAP 0904, 010 (2009), (arXiv:0808.3607).

    Article  ADS  Google Scholar 

  307. M. Fairbairn and J. Heal, “On the complementarity of dark matter searches at resonance,” Phys. Rev. D 90, 115019 (2014), (arXiv:1406.3288).

    Article  ADS  Google Scholar 

  308. M. Wood, J. Buckley, S. Digel, S. Funk, D. Nieto, and M. A. Sanchez-Conde, “Prospects for indirect detection of dark matter with CTA:” arXiv:1305.0302 [astro-ph].

  309. A. Kounine, “The alpha magnetic spectrometer on the international space station,” Int. J. Mod. Phys. E 21 (08), 1230005 (2012).

    Article  ADS  Google Scholar 

  310. M. Gomez, C. Jackson, and G. Shaughnessy, “Dark matter on top:” arXiv:1404.1918 [hep-ph].

  311. U. Haisch and E. Re, “Simplified dark matter topquark interactions at the LHC:” arXiv:1503.00691 [hep-ph].

  312. B. Dobrich, “Looking for dark matter on the light side:” arXiv:1501.03274 [hep-ph].

  313. K. Van Tilburg, N. Leefer, L. Bougas, and D. Budker, “Search for ultralight scalar dark matter with atomic spectroscopy:” arXiv:1503.06886 [physics.atom-ph].

  314. A. Arvanitaki, J. Huang, and K. Van Tilburg, “Searching for dilaton dark matter with atomic clocks,” Phys. Rev. D 91 (1), 015015 (2015), (arXiv:1405.2925).

    Article  ADS  Google Scholar 

  315. Y. Stadnik and V. Flambaum, “Searching for dark matter and variation of fundamental constants with laser and maser interferometry,” Phys. Rev. Lett. 114, 161301 (2015), (arXiv:1412.7801).

    Article  ADS  Google Scholar 

  316. M. Khlopov, “Dark atoms and puzzles of dark matter searches,” Int. J. Mod. Phys. A 29, 1443002 (2014).

    Article  ADS  Google Scholar 

  317. M. Y. Khlopov and R. Shibaev, “Probes for 4th generation constituents of dark atoms in Higgs boson studies at the LHC:” arXiv:1402.0180 [hep-ph].

  318. K. Belotsky, M. Khlopov, and M. Laletin, “Dark atoms and their decaying constituents:” arXiv:1411.3657 [hep-ph].

  319. K. Belotsky, M. Khlopov, C. Kouvaris, and M. Laletin, “Decaying dark atom constituents and cosmic positron excess,” Adv. High Energy Phys. 2014, 214258 (2014), (arXiv:1403.1212).

    Google Scholar 

  320. R. Primulando, E. Salvioni, and Y. Tsai, “The dark penguin shines light at colliders:” arXiv:1503.04204 [hep-ph].

  321. P. Ko, “Dark matter, dark radiation and Higgs phenomenology in the hidden sector DM models:” arXiv:1503.05412 [hep-ph].

  322. A. Rajaraman, J. Smolinsky, and P. Tanedo, “Onshell mediators and top-charm dark matter models for the Fermi-LAT galactic center excess:” arXiv:1503.05919 [hep-ph].

  323. Q.-F. Xiang, X.-J. Bi, P.-F. Yin, and Z.-H. Yu, “Searches for dark matter signals in simplified models at future Hadron Colliders:” arXiv:1503.02931 [hep-ph].

  324. V. Martin-Lozano, M. Peiro, and P. Soler, “Isospin violating dark matter in Stückelberg portal scenarios:” arXiv:1503.01780 [hep-ph].

  325. F. Rossi-Torres and C. Moura, “Scalar dark matter in the light of LEP and ILC experiments:” arXiv:1503.06475 [hep-ph].

  326. E. Fortes, V. Pleitez, and F. Stecker, “Secluded WIMPs, QED with massive photons, and the galactic center gamma-ray excess:” arXiv:1503.08220 [hep-ph].

  327. J. Suzuki, T. Horie, Y. Inoue, and M. Minowa, “Experimental search for hidden photon CDM in the eV mass range with a dish antenna:” arXiv:1504.00118 [hep-ex].

  328. A. Delgado, M. Garcia-Pepin, B. Ostdiek, and M. Quiros, “Dark matter from the supersymmetric custodial triplet model:” arXiv:1504.02486 [hep-ph].

  329. K. Ghorbani and H. Ghorbani, “Two-portal dark matter:” arXiv:1504.03610 [hep-ph].

  330. K. Kainulainen, K. Tuominen, and J. Virkajarvi, “A model for dark matter, naturalness and a complete gauge unification:” arXiv:1504.07197 [hep-ph].

  331. Q.-H. Cao, C.-R. Chen, C.S. Li, and H. Zhang, “Effective dark matter model: Relic density, CDMS II, Fermi LAT and LHC,” JHEP 1108, 018 (2011), (arXiv:0912.4511).

    Google Scholar 

  332. J. Goodman and W. Shepherd, “LHC bounds on UVcomplete models of dark matter:” arXiv:1111.2359 [hep-ph].

  333. I. M. Shoemaker and L. Vecchi, “Unitarity and monojet bounds on models for DAMA, CoGeNT, and CRESST-II,” Phys. Rev. D 86, 015023 (2012), (arXiv:1112.5457).

    Article  ADS  Google Scholar 

  334. A. Rajaraman, W. Shepherd, T. M. Tait, and A. M. Wijangco, “LHC bounds on interactions of dark matter,” Phys. Rev. D 84, 095013 (2011), (arXiv:1108.1196).

    Article  ADS  Google Scholar 

  335. K. Cheung, P.-Y. Tseng, Y.-L.S. Tsai, and T.-C. Yuan, “Global constraints on effective dark matter interactions: Relic density, direct detection, indirect detection, and Collider,” JCAP 1205, 001 (2012), (arXiv:1201.3402).

    Article  ADS  Google Scholar 

  336. R. Cotta, J. Hewett, M. Le, and T. Rizzo, “Bounds on dark matter interactions with electroweak gauge bosons,” Phys. Rev. D 88, 116009 (2013), (arXiv:1210.0525).

    Article  ADS  Google Scholar 

  337. S. Profumo, W. Shepherd, T. Tait, “Pitfalls of dark matter crossing symmetries,” Phys. Rev. D 88, 056018 (2013), (arXiv:1307.6277).

    Article  ADS  Google Scholar 

  338. A. Alves, S. Profumo, and F. S. Queiroz, “The dark Z ' portal: Direct, indirect and Collider searches,” JHEP 1404, 063 (2014), (arXiv:1312.5281).

    Article  ADS  Google Scholar 

  339. M. B. Krauss, S. Morisi, W. Porod, and W. Winter, “Higher dimensional effective operators for direct dark matter detection,” JHEP 1402, 056 (2014), (arXiv:1312.0009).

    Article  ADS  Google Scholar 

  340. O. Buchmueller, M. J. Dolan, and C. McCabe, “Beyond effective field theory for dark matter searches at the LHC,” JHEP 1401, 025 (2014), (arXiv:1308.6799).

    Article  ADS  Google Scholar 

  341. G. Busoni, A. De Simone, J. Gramling, E. Morgante, and A. Riotto, “On the validity of the effective field theory for dark matter searches at the LHC, Part II: Complete analysis for the -channel,” JCAP 1406, 060 (2014), (arXiv:1402.1275).

    Article  ADS  MathSciNet  Google Scholar 

  342. G. Busoni, A. De Simone, T. Jacques, E. Morgante, and A. Riotto, “On the validity of the effective field theory for dark matter searches at the LHC Part III: Analysis for the -channel,” JCAP 1409, 022 (2014), (arXiv:1405.3101).

    Article  ADS  Google Scholar 

  343. F. D’Eramo and M. Procura, “Connecting dark matter UV complete models to direct detection rates via effective field theory,” JHEP 1504, 054 (2015), (arXiv:1411.3342).

    Article  Google Scholar 

  344. A. Drozd, J. Ellis, J. Quevillon, and T. You, “Comparing EFT and exact one-loop analyses of non-degenerate stops:” arXiv:1504.02409 [hep-ph].

  345. E. Dudas and D. Ghilencea, “Effective operators in SUSY, superfield constraints and searches for a UV completion:” arXiv:1503.08319 [hep-th].

  346. M. T. Frandsen, F. Kahlhoefer, S. Sarkar, and K. Schmidt-Hoberg, “Direct detection of dark matter in models with a light Z’,” JHEP 1109, 128 (2011), (arXiv:1107.2118).

    Article  ADS  Google Scholar 

  347. P. Agrawal, S. Blanchet, Z. Chacko, and C. Kilic, “Flavored dark matter, and its implications for direct detection and Colliders,” Phys. Rev. D 86, 055002 (2012), (arXiv:1109.3516).

    Article  ADS  Google Scholar 

  348. H. An, X. Ji, and L.-T. Wang, “Light dark matter and dark force at colliders,” JHEP 1207, 182 (2012), (1202.2894arXiv:1202.2894).

    Article  ADS  Google Scholar 

  349. M. T. Frandsen, F. Kahlhoefer, A. Preston, S. Sarkar, K. Schmidt-Hoberg, “LHC and tevatron bounds on the dark matter direct detection cross-section for vector mediators,” JHEP 1207, 123 (2012), (arXiv:1204.3839).

    Article  ADS  Google Scholar 

  350. H. An, R. Huo, and L.-T. Wang, “Searching for low mass dark portal at the LHC,” Phys. Dark Univ. 2, 50–57 (2013), (arXiv:1212.2221).

    Article  Google Scholar 

  351. S. Chang, R. Edezhath, J. Hutchinson, and M. Luty, “Effective WIMPs,” Phys. Rev. D 89, 015011 (2014), (arXiv:1307.8120).

    Article  ADS  Google Scholar 

  352. H. An, L.-T. Wang, and H. Zhang, “Dark matter with -channel mediator: A simple step beyond contact interaction,” Phys. Rev. D 89, 115014 (2014), (arXiv:1308.0592).

    Article  ADS  Google Scholar 

  353. A. DiFranzo, K. I. Nagao, A. Rajaraman, and T. M. Tait, “Simplified models for dark matter interacting with quarks,” JHEP 1311, 014 (2013), (arXiv:1308.2679).

    Article  ADS  Google Scholar 

  354. E. Morgante, “On the validity of the EFT for dark matter searches at the LHC:” 1409.6668arXiv: 1409.6668 [hep-ph].

  355. S. Malik, C. McCabe, H. Araujo, A. Belyaev, C. Boehm et al., “Interplay and characterization of dark matter searches at Colliders and in direct detection experiments:” arXiv:1409.4075 [hep-ex].

  356. O. Buchmueller, M. J. Dolan, S. A. Malik, and C. McCabe, “Characterising dark matter searches at Colliders and direct detection experiments: Vector mediators:” arXiv:1407.8257 [hep-ph].

  357. M. J. Dolan, C. McCabe, F. Kahlhoefer, and K. Schmidt-Hoberg, “A taste of dark matter: Flavour constraints on pseudoscalar mediators:” arXiv:1412.5174 [hep-ph].

  358. K. Kong, “Measuring properties of dark matter at the LHC,” Proceedings of AIP Conf., 2014, vol. 1604, pp. 381–388 (arXiv:1309.6936).

    Article  ADS  Google Scholar 

  359. J. Ellis, “The physics landscape after the Higgs discovery at the LHC:” arXiv:1504.03654 [hep-ph].

  360. A. Arbey, M. Battaglia, and F. Mahmoudi, “The Higgs boson, supersymmetry and dark matter: Relations and perspectives:” arXiv:1504.05091 [hep-ph].

  361. Z.-H. Yu, X.-J. Bi, Q.-S. Yan, and P.-F. Yin, “Tau portal dark matter models at the LHC:” arXiv:1410.3347.

  362. J. Kile, A. Kobach, and A. Soni, “Lepton-flavored dark matter:” arXiv:1411.1407 [hep-ph].

  363. E. Ma and A. Natale, “Dark matter with flavor symmetry and its Collider signature,” Phys. Lett. B 740, 80–82 (2014), (arXiv:1410.2902).

    Article  ADS  Google Scholar 

  364. J. Bramante, P. J. Fox, A. Martin, B. Ostdiek, T. Plehn, T. Schell, and M. Takeuchi, “The relic neutralino surface at a 100 TeV Collider:” arXiv:1412.4789.

  365. L. Calibbi, J. M. Lindert, T. Ota, and Y. Takanishi, “LHC tests of light neutralino dark matter without light sfermions,” JHEP 1411, 106 (2014), (arXiv:1410.5730).

    Article  ADS  Google Scholar 

  366. F. S. Queiroz, K. Sinha, and A. Strumia, “Leptoquarks, dark matter, and anomalous LHC events:” arXiv:1409.6301.

  367. G. Busoni, A. De Simone, T. Jacques, E. Morgante, and A. Riotto, “Making the most of the relic density for dark matter searches at the LHC 14 TeV run:” arXiv:1410.7409.

  368. M. R. Buckley, D. Feld, and D. Goncalves, “Scalar simplified models for dark matter,” Phys. Rev. D 91, 015017 (2015), (arXiv:1410.6497).

    Article  ADS  Google Scholar 

  369. P. Harris, V. V. Khoze, M. Spannowsky, and C. Williams, “Constraining dark sectors at Colliders: Beyond the effective theory approach:” arXiv:1411.0535 [hep-ph].

  370. Y.-B. Liu and Z.-J. Xiao, “Constraining dark matter in the LRTH model with latest LHC, XENON100 and LUX date:” arXiv:1409.8000 [hep-ph].

  371. M. Low and L.-T. Wang, “Neutralino dark matter at 14 TeV and 100 TeV,” JHEP 1408, 161 (2014), (arXiv:1404.0682).

    Article  ADS  Google Scholar 

  372. J. Abdallah, A. Ashkenazi, A. Boveia, G. Busoni, A. De Simone et al., “Simplified models for dark matter and missing energy searches at the LHC:” arXiv:1409.2893 [hep-ph].

  373. T. Han, Z. Liu, and S. Su, “Light neutralino dark matter: Direct/indirect detection and collider searches,” JHEP 1408, 093 (2014), (arXiv:1406.1181).

    Article  ADS  Google Scholar 

  374. A. Bhattacharya, R. Gandhi, and A. Gupta, “The direct detection of boosted dark matter at high energies and PeV events at IceCube:” arXiv:1407.3280 [hep-ph].

  375. J. Blumenthal, P. Gretskov, M. Kramer, and C. Wiebusch, “Effective field theory interpretation of searches for dark matter annihilation in the Sun with the IceCube neutrino observatory:” arXiv:1411.5917.

  376. T. Li, S. Miao, and Y.-F. Zhou, “Light mediators in dark matter direct detections:” arXiv:1412.6220 [hep-ph].

  377. K. Agashe, Y. Cui, L. Necib, and J. Thaler, “(In)direct detection of boosted dark matter,” JCAP 1410 (10), 062 (2014), (arXiv:1405.7370).

    Article  ADS  Google Scholar 

  378. N. F. Bell, Y. Cai, J. B. Dent, R. K. Leane, and T. J. Weiler, “Dark matter at the LHC: EFTs and gauge invariance:” arXiv:1503.07874 [hep-ph].

  379. A. Ibarra and S. Wild, “Dirac dark matter with a charged mediator: A comprehensive one-loop analysis of the direct detection phenomenology:” arXiv:1503.03382 [hep-ph].

  380. M. Garny, A. Ibarra, and S. Vogl, “Signatures of Majorana dark matter with t-channel mediators:” arXiv:1503.01500 [hep-ph].

  381. A. Crivellin, U. Haisch, and A. Hibbs, “LHC constraints on gauge boson couplings to dark matter:” arXiv:1501.00907 [hep-ph].

  382. A. J. Anderson, P. J. Fox, Y. Kahn, and M. McCullough, “Halo-independent direct detection analyses without mass assumptions:” arXiv:1504.03333 [hep-ph].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Bednyakov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bednyakov, V.A. Is it possible to discover a dark matter particle with an accelerator?. Phys. Part. Nuclei 47, 711–774 (2016). https://doi.org/10.1134/S1063779616050026

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779616050026

Navigation