Skip to main content
Log in

Anisotropic Solutions for \(\boldsymbol{R^{2}}\) Gravity Model with a Scalar Field

  • ELEMENTARY PARTICLES AND FIELDS/Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

We study anisotropic solutions for the pure \(R^{2}\) gravity model with a scalar field in the Bianchi I metric. The evolution equations have a singularity at zero value of the Ricci scalar \(R\) for anisotropic solutions, whereas these equations are smooth for isotropic solutions. So, there is no anisotropic solution with the Ricci scalar smoothly changing its sign during evolution. We have found anisotropic solutions using the conformal transformation of the metric and the Einstein frame. The general solution in the Einstein frame has been found explicitly. The corresponding solution in the Jordan frame has been constructed in quadratures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. A. Bernui, B. Mota, M. J. Reboucas, and R. Tavakol, Astron. Astrophys. 464, 479 (2007); astro-ph/0511666.

    Article  ADS  Google Scholar 

  2. S. A. Appleby and E. V. Linder, Phys. Rev. D 87, 023532 (2013); arXiv: 1210.8221.

  3. R. M. Wald, Phys. Rev. D 28, 2118 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  4. J. M. Aguirregabiria, A. Feinstein, and J. Ibanez, Phys. Rev. D 48, 4662 (1993); grqc/9309013.

  5. T. S. Pereira, C. Pitrou, and J.-P. Uzan, J. Cosmol. Astropart. Phys., No. 09, 006 (2007); arXiv: 0707.0736.

  6. I. Ya. Aref’eva, N. V. Bulatov, L. V. Joukovskaya, and S. Yu. Vernov, Phys. Rev. D 80, 083532 (2009); arXiv: 0903.5264.

  7. I. Ya. Aref’eva, N. V. Bulatov, and S. Yu. Vernov, Theor. Math. Phys. 163, 788 (2010); arXiv: 0911.5105.

    Article  CAS  Google Scholar 

  8. C. R. Fadragas, G. Leon, and E. N. Saridakis, Class. Quant. Grav. 31, 075018 (2014); arXiv: 1308.1658.

  9. A. Paliathanasis, Universe 7, 323 (2021); arXiv: 2108.12154.

  10. L. Chataignier, A. Yu. Kamenshchik, A. Tronconi, and G. Venturi, Phys. Rev. D 107, 023508 (2023); arXiv: 2208.02280.

  11. A. A. Starobinsky, Sov. Astron. Lett 7, 36 (1981).

    ADS  Google Scholar 

  12. M. Sami, M. Shahalam, M. Skugoreva, and A. Toporensky, Phys. Rev. D 86, 103532 (2012); arXiv: 1207.6691.

  13. A. Yu. Kamenshchik, E. O. Pozdeeva, A. Tronconi, G. Venturi, and S. Yu. Vernov, Phys. Part. Nucl. 49, 1 (2018); arXiv: 1606.04260.

    Article  Google Scholar 

  14. U. Camci, A. Yildirim, and I. Basaran Oz, Astropart. Phys. 76, 29 (2016); arXiv: 1605.00864.

    Article  ADS  Google Scholar 

  15. A. Yu. Kamenshchik, E. O. Pozdeeva, S. Yu. Vernov, A. Tronconi, and G. Venturi, Phys. Rev. D 95, 083503 (2017); arXiv: 1702.02314.

  16. A. Yu. Kamenshchik, E. O. Pozdeeva, A. A. Starobinsky, A. Tronconi, G. Venturi, and S. Yu. Vernov, Phys. Rev. D 97, 023536 (2018); arXiv: 1710.02681.

  17. V. T. Gurovich and A. A. Starobinsky, Sov. Phys. JETP 50, 844 (1979).

    ADS  Google Scholar 

  18. M. F. Figueiro and A. Saa, Phys. Rev. D 80, 063504 (2009); arXiv: 0906.2588.

  19. G. Leon and E. N. Saridakis, Class. Quantum Grav. 28, 065008 (2011); arXiv: 1007.3956.

  20. D. Müller, A. Ricciardone, A. A. Starobinsky, and A. Toporensky, Eur. Phys. J. C 78, 311 (2018); arXiv: 1710.08753.

    Article  ADS  Google Scholar 

  21. S. Arora, S. Mandal, S. Chakraborty, G. Leon, and P. K. Sahoo, J. Cosmol. Astropart. Phys., No. 09, 042 (2022); arXiv: 2207.08479.

  22. S. Nojiri, S. D. Odintsov, V. K. Oikonomou, and A. Constantini, Nucl. Phys. B 985, 116011 (2022); arXiv: 2210.16383.

  23. D. Muller and S. D. P. Vitenti, Phys. Rev. D 74, 083516 (2006); gr-qc/0606018.

  24. J. D. Barrow and S. Hervik, Phys. Rev. D 81, 023513 (2010); arXiv: 0911.3805.

  25. A. Toporensky and D. Müller, Gen. Rel. Grav. 49, 8 (2017); arXiv: 1603.02851.

    Article  ADS  Google Scholar 

  26. S. V. Ketov, Universe 8, 351 (2022); arXiv: 2205.13172.

  27. S. V. Ketov, E. O. Pozdeeva, and S. Yu. Vernov, J. Cosmol. Astropart. Phys. 12, 032 (2022); arXiv: 2211.01546.

  28. T. Q. Do, D. H. Nguyen, and T. M. Pham, Int. J. Mod. Phys. D 32, 2350087 (2023); arXiv: 2303.17283.

  29. A. A. Starobinsky, S. V. Sushkov, and M. S. Volkov, Phys. Rev. D 101, 064039 (2020); arXiv: 1912.12320.

  30. R. Galeev, R. Muharlyamov, A. A. Starobinsky, S. V. Sushkov, and M. S. Volkov, Phys. Rev. D 103, 104015 (2021); arXiv: 2102.10981.

  31. S. V. Chervon, Russ. Phys. J. 38, 539 (1995).

    Article  Google Scholar 

  32. F. Di Marco, F. Finelli, and R. Brandenberger, Phys. Rev. D 67, 063512 (2003); astro-ph/0211276.

  33. A. Paliathanasis, G. Leon, and S. Pan, Gen. Rel. Grav. 51, 106 (2019); arXiv: 1811.10038.

    Article  ADS  Google Scholar 

  34. S. V. Chervon, I. V. Fomin, E. O. Pozdeeva, M. Sami, and S. Yu. Vernov, Phys. Rev. D 100, 063522 (2019); arXiv: 1904.11264.

  35. M. Braglia, D. K. Hazra, F. Finelli, G. F. Smoot, L. Sriramkumar, and A. A. Starobinsky, J. Cosmol. Astropart. Phys., 08, 001 (2020); arXiv: 2005.02895.

  36. L. Anguelova, J. Cosmol. Astropart. Phys., 06, 004 (2021); arXiv: 2012.03705.

  37. V. Zhuravlev and S. Chervon, Universe 6, 195 (2020).

    Article  ADS  CAS  Google Scholar 

  38. A. Paliathanasis and G. Leon, Class. Quant. Grav. 38, 075013 (2021); arXiv: 2009.12874.

  39. V. R. Ivanov and S. Yu. Vernov, Eur. Phys. J. C 81, 985 (2021); arXiv: 2108.10276.

    Article  ADS  CAS  Google Scholar 

  40. L. R. Díaz-Barrón, A. Espinoza-García, S. Pérez-Payán, and J. Socorro, Int. J. Mod. Phys. D 30, 2150080 (2021); arXiv: 2101.05973.

  41. J. Tot, B. Yildirim, A. Coley, and G. Leon, Phys. Dark Univ. 39, 101155 (2023); arXiv: 2204.06538.

  42. A. Yu. Kamenshchik, E. O. Pozdeeva, S. Yu. Vernov, A. Tronconi, and G. Venturi, Phys. Rev. D 94, 063510 (2016); arXiv: 1602.07192.

  43. A. A. Starobinsky, Phys. Lett. B 91, 99 (1980).

    Article  ADS  Google Scholar 

Download references

Funding

The work of V.R.I. was supported by the ‘‘BASIS’’ Foundation, grant no. 22-2-2-6-1.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. R. Ivanov or S. Yu. Vernov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, V.R., Vernov, S.Y. Anisotropic Solutions for \(\boldsymbol{R^{2}}\) Gravity Model with a Scalar Field. Phys. Atom. Nuclei 86, 1526–1532 (2023). https://doi.org/10.1134/S1063778824010204

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778824010204

Navigation