Skip to main content
Log in

Antineutron Reconstruction and Identification in Electromagnetic Calorimeter

  • ELEMENTARY PARTICLES AND FIELDS/Experiment
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The ALICE experiment at the LHC is designed to explore the hot and dense medium produced in heavy-ion collisions, the so-called quark–gluon plasma (QGP). Antineutron production is a poorly explored domain of high energy physics, although it is interesting in the context of hadrons decaying into antineutrons, the interaction of antineutrons with hadrons, and searching for bound states of antineutrons. We present a method for measuring antineutrons by the electromagnetic calorimeter PHOS of the ALICE experiment. An antineutron can be identified by the cluster shape and the energy deposition in the calorimeter, and its momentum can be reconstructed using the time-of-flight information. The proposed method was verified via the reconstruction of \(\bar{\Sigma}^{\pm}\) through decays \(\bar{\Sigma}^{+}\rightarrow\bar{n}\pi^{+}\) and \(\bar{\Sigma}^{-}\rightarrow\bar{n}\pi^{-}\) with an antineutron identified in the PHOS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

REFERENCES

  1. R. L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022).

  2. M. Duer, T. Aumann, R. Gernhäuser, V. Panin, S. Paschalis, D. M. Rossi, N. L. Achouri, D. Ahn, H. Baba, C. A. Bertulani, M. Böhmer, K. Boretzky, C. Caesar, N. Chiga, A. Corsi, D. Cortina-Gil, et al., Nature (London, U.K.) 606, 678 (2022).

    Article  ADS  Google Scholar 

  3. D. Nguyen, C. Neuburger, R. Cruz-Torres, A. Schmidt, D. W. Higinbotham, J. Kahlbow, P. Monaghan, E. Piasetzky, and O. Hen, Phys. Lett. B 831, 137165 (2022).

  4. S. Acharya et al. (ALICE Collab.), Nature (London, U.K.) 588, 232 (2020);

    Article  ADS  Google Scholar 

  5. Nature (London, U.K.) 590, E13 (2021); arXiv: 2005.11495 [nucl-ex].

  6. K. Aamodt et al. (ALICE Collab.), J. Instrum. 3, S08002 (2008).

  7. B. Abelev et al. (ALICE Collab.), J. Phys. G 41, 087002 (2014).

  8. C. Lippmann, in Proceedings of the 2nd International Conference on Technology and Instrumentation in Particle Physics TIPP 2011; Phys. Proc. 37, 434 (2012).

    Article  ADS  Google Scholar 

  9. G. Dellacasa et al. (ALICE Collab.), CERN-LHCC-99-04 (1999).

  10. E. Abbas et al. (ALICE Collab.), J. Instrum. 8, P10016 (2013); arXiv: 1306.3130 [nucl-ex].

  11. S. Roesler, R. Engel, and J. Ranft, in Proceedings of the International Conference on Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications MC 2000 (2000), p. 1033; hep-ph/0012252.

  12. D. Blau (ALICE Collab.), J. Instrum. 15, C03025 (2020); arXiv: 2001.02928 [hep-ex].

  13. D. Blau (ALICE Collab.), J. Phys.: Conf. Ser. 1690, 012044 (2020).

Download references

Funding

We acknowledge support from NRC ‘‘Kurchatov Institute’’ and NRNU ‘‘MEPhI’’.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to P. Gordeev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gordeev, P., ALICE Collaboration. Antineutron Reconstruction and Identification in Electromagnetic Calorimeter. Phys. Atom. Nuclei 86, 827–831 (2023). https://doi.org/10.1134/S1063778823050174

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778823050174

Navigation