Skip to main content
Log in

Use of Global Predictions for Beta-Decay Rates in Astrophysical Models

  • NUCLEI/Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The nucleosynthesis of heavy elements is calculated for two scenarios of neutron-star merger. Various global beta-decay models, including those based on the random-phase approximation (QRPA), relativistic quasiparticle RPA (pn-RQRPA), and the finite-amplitude method (FAM), were employed in these calculations. It is shown that the application of various global models in calculations of nucleosynthesis leads to the formation of a realistic structure of the curve of abundances of chemical elements. In contrast to nucleosynthesis in the scenario of merger of equal-mass neutron stars, the formation of elements in matter of the outer crust upon the explosion of a low-mass neutron star is weakly model-dependent in the region from the first to the second peak. However, the abundance of elements depends greatly on the beta-decay model in a strong r-process. No systematic effect of the beta-decay model on the results of nucleosynthesis is revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

REFERENCES

  1. J. J. Cowan, C. Sneden, J. E. Lawler, A. Aprahamian, M. Wiescher, K. Langanke, G. Martínez-Pinedo, and F.-K. Thielemann, Rev. Mod. Phys. 93, 015002 (2021).

    Article  ADS  Google Scholar 

  2. I. V. Panov, Astron. Lett. 29, 163 (2003).

    Article  ADS  Google Scholar 

  3. I. V. Panov and Yu. S. Lutostansky, Phys. At. Nucl. 83, 613 (2020).

    Article  Google Scholar 

  4. E. M. Burbidge, G. R. Burbidge, W. A. Fowler, and F. Hoyle, Rev. Mod. Phys. 29, 547 (1957).

    Article  ADS  Google Scholar 

  5. P. A. Seeger, W. A. Fowler, and D. D. Clayton, Astrophys. J. Suppl. 11, 121 (1965).

    Article  Google Scholar 

  6. C. Sneden, J. J. Cowan, I. I. Ivans, G. M. Fuller, S. Burles, T. C. Beers, and J. E. Lawler, Astrophys. J. 533, L139 (2000).

    Article  ADS  Google Scholar 

  7. L. Hüdepohl, B. Müller, H.-T. Janka, A. Marek, and G. G. Raffelt, Phys. Rev. Lett. 104, 251101 (2010).

    Article  ADS  Google Scholar 

  8. S. I. Blinnikov, I. D. Novikov, T. V. Perevodchikova, and A. G. Polnarev, Astron. Lett. 10, 177 (1984).

    Google Scholar 

  9. F.-K. Thielemann, M. Eichler, I. V. Panov, and B. Wehmeyer, Ann. Rev. Nucl. Part. Sci. 67, 253 (2017).

    Article  ADS  Google Scholar 

  10. N. R. Tanvir, A. J. Levan, C. González-Fernández, O. Korobkin, I. Mandel, S. Rosswog, J. Hjorth, P. D’Avanzo, A. S. Fruchter, C. L. Fryer, T. Kangas, B. Milvang-Jensen, S. Rosetti, D. Steeghs, R. T. Wollaeger, Z. Cano, et al., Astrophys. J. Lett. 848, L27 (2017).

    Article  ADS  Google Scholar 

  11. D. Watson, C. J. Hansen, J. Selsing, A. Koch, D. B. Malesani, A. C. Andersen, J. P. U. Fynbo, A. Arcones, A. Bauswein, S. Covino, A. Grado, K. E. Heintz, L. Hunt, C. Kouveliotou, G. Leloudas, A. J. Levan, et al., Nature (London, U.K.) 574, 497 (2019).

    Article  ADS  Google Scholar 

  12. P. Möller, J. R. Nix, and K.-L. Kratz, At. Data Nucl. Data Tables 66, 131 (1997).

    Article  ADS  Google Scholar 

  13. I. N. Borzov, S. A. Fayans, and E. L. Trykov, Nucl. Phys. A 584, 335 (1995).

    Article  ADS  Google Scholar 

  14. I. N. Borzov, Nucl. Phys. A 777, 645 (2006).

    Article  ADS  Google Scholar 

  15. I. N. Borzov, Phys. At. Nucl. 83, 700 (2020).

    Article  Google Scholar 

  16. K.-L. Kratz, K. Farouqi, and B. Pfeiffer, Prog. Part. Nucl. Phys. 59, 147 (2007).

    Article  ADS  Google Scholar 

  17. I. V. Panov, Phys. At. Nucl. 81, 68 (2018).

    Article  Google Scholar 

  18. I. V. Panov, Yu. S. Lutostansky, and F.-K. Thielemann, J. Phys.: Conf. Ser. 665, 012060 (2016).

    Google Scholar 

  19. V. G. Aleksankin, Yu. S. Lyutostanskiĭ, and I. V. Panov, Sov. J. Nucl. Phys. 19, 804 (1981).

  20. J. Krumlinde and P. Möller, Nucl. Phys. A 417, 419 (1984).

    Article  ADS  Google Scholar 

  21. E. M. Ney, J. Engel, and N. Schunck, Phys. Rev. C 102, 034326 (2020).

    Article  ADS  Google Scholar 

  22. T. Marketin, L. Huther, and G. Martinez-Pinedo, Phys. Rev. C 93, 025805 (2016).

    Article  ADS  Google Scholar 

  23. P. Möller, B. Pfeiffer, and K.-L. Kratz, Phys. Rev. C 67, 055802 (2003).

    Article  ADS  Google Scholar 

  24. I. V. Panov, in Proceedings of the 71st International Conference NUCLEUS-2021, Ed. by V. N. Kovalenko and E. V. Andronov (VVM, St. Petersburg, 2021), p. 269.

  25. I. V. Panov and F.-K. Thielemann, Astron. Lett. 29, 510 (2003).

    Article  ADS  Google Scholar 

  26. I. V. Panov, I. Yu. Korneev, and F.-K. Thielemann, Astron. Lett. 34, 189 (2008).

    Article  ADS  Google Scholar 

  27. I. V. Panov, I. Yu. Korneev, and F.-K. Thielemann, Phys. At. Nucl. 72, 1026 (2009).

    Article  Google Scholar 

  28. S. Rosswog, U. Feindt, O. Korobkin, M.-R. Wu, J. Sollerman, A. Goobar, and G. Martinez-Pinedo, Class. Quant. Grav. 34, 104001 (2017).

    Article  ADS  Google Scholar 

  29. S. Rosswog, T. Piran, and E. Nakar, Mon. Not. R. Astron. Soc. 430, 2585 (2013).

    Article  ADS  Google Scholar 

  30. O. Korobkin, S. Rosswog, A. Arcones, and C. Winteler, Mon. Not. R. Astron. Soc. 426, 1940 (2012).

    Article  ADS  Google Scholar 

  31. S. Rosswog, O. Korobkin, A. Arcones, F.-K. Thielemann, and T. Piran, Mon. Not. R. Astron. Soc. 439, 744 (2014).

    Article  ADS  Google Scholar 

  32. D. Martin, A. Perego, A. Arcones, F.-K. Thielemann, O. Korobkin, and S. Rosswog, Astrophys. J. 813, 2 (2015).

    Article  ADS  Google Scholar 

  33. S. I. Blinnikov, D. K. Nadyozhin, N. I. Kramarev, and A. V. Yudin, Astron. Rep. 65, 385 (2021).

    Article  ADS  Google Scholar 

  34. I. V. Panov and A. V. Yudin, Astron. Lett. 46, 518 (2020).

    Article  ADS  Google Scholar 

  35. I. V. Panov and A. V. Yudin, Phys. At. Nucl. 86 (1) (2023, in press).

  36. I. Yu. Korneev and I. V. Panov, Astron. Lett. 37, 864 (2011).

    Article  ADS  Google Scholar 

  37. D. K. Nadyozhin, I. V. Panov, and S. I. Blinnikov, Astron. Astrophys. 335, 207 (1998).

    ADS  Google Scholar 

  38. K. Langanke and G. Martinez-Pinedo, Nucl. Phys. A 673, 481 (2000).

    Article  ADS  Google Scholar 

  39. C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations (Prentice-Hall, Englewood Cliffs, NJ, 1971).

    MATH  Google Scholar 

  40. S. I. Blinnikov and O. S. Bartunov, Astron. Astrophys. 273, 106 (1993).

    ADS  Google Scholar 

  41. S. I. Blinnikov and N. V. Dunina-Barkovskaya, Mon. Not. R. Astron. Soc. 266, 289 (1994).

    Article  ADS  Google Scholar 

  42. Y. Aboussir, J. M. Pearson, A. K. Dutta, and F. Tondeur, At. Data Nucl. Data Tables 61, 127 (1995).

    Article  ADS  Google Scholar 

  43. P. Moeller, J. R. Nix, and K.-L. Kratz, At. Data Nucl. Data Tables 66, 131 (1997).

    Article  ADS  Google Scholar 

  44. T. Rauscher and F.-K. Thielemann, At. Data Nucl. Data Tables 75, 1 (2000).

    Article  ADS  Google Scholar 

  45. I. V. Panov, E. Kolbe, B. Pfeiffer, T. Rauscher, K.-L. Kratz, and F.-K. Thielemann, Nucl. Phys. A 747, 633 (2005).

    Article  ADS  Google Scholar 

  46. I. V. Panov, I. Yu. Korneev, T. Rauscher, G. Martinez-Pinedo, A. Kelic-Heil, N. T. Zinner, and F.-K. Thielemann, Astron. Astrophys. 513, A61 (2010).

    Article  ADS  Google Scholar 

  47. NuDat2, 2009, Natl. Nuclear Data Center. http://www.nndc.bnl.gov/nudat2/.

  48. A. V. Yudin, T. L. Razinkova, and S. I. Blinnikov, Astron. Lett. 45, 847 (2020).

    Article  ADS  Google Scholar 

  49. S. Rosswog et al., Astron. Astrophys. 341, 499 (1999).

    ADS  Google Scholar 

  50. M. Eichler, A. Arcones, A. Kelic, O. Korobkin, K. Langanke, T. Marketin, G. Martinez-Pinedo, I. Panov, T. Rauscher, S. Rosswog, C. Winteler, N. T. Zinner, and F.-K. Thielemann, Astrophys. J. 808, 30 (2015).

    Article  ADS  Google Scholar 

  51. P. Dimitriou, I. Dillmann, B. Singh, V. Piksaikin, et al., Nucl. Data Sheets 3, 144 (2021).

    Article  ADS  Google Scholar 

  52. M. R. Mumpower, R. Surman, G. C. McLaughlin, and A. Aprahamian, Prog. Part. Nucl. Phys. 86, 86 (2016).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to I.N. Borzov, Yu.S. Lutostansky, and A.V. Yudin for stimulating discussions.

Funding

The applicability of global calculations for beta-decay half-lives in the analysis of the r-process was studied under the auspices of Russian Science Foundation (grant no. 21-12-00061).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Panov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panov, I.V. Use of Global Predictions for Beta-Decay Rates in Astrophysical Models. Phys. Atom. Nuclei 86, 173–180 (2023). https://doi.org/10.1134/S1063778823020163

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778823020163

Navigation