Skip to main content
Log in

Allowance for the orientation of colliding ions in describing the synthesis of heavy nuclei

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The dynamical model proposed earlier for describing fusion-fission reactions was modified in order to take into account an arbitrary orientation of colliding ions. In this model, the evolution of collective coordinates of the system under study is treated as a two-stage process. The motion of the projectile nucleus toward the target nucleus is considered at the first stage, and the evolution of a continuous dinuclear system formed as soon as the projectile and target nuclei touch each other is calculated at the second stage. At either stage of the calculation, the dynamical evolution of the system is described in terms of Langevin equations. The shell structure of the nuclei involved is taken into account at both stages. The difference between the results obtained for the first stage with allowance for an arbitrary orientation of colliding ions and the respective results for the case where their symmetry axes are aligned are discussed. The cross sections for the touching of primary nuclei and for their fusion are calculated, along with the cross sections for evaporation-residue formation in reactions involving nuclei that are prolate and spherical in the ground state. The results are compared with available theoretical and experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Volkov, Phys. Part. Nucl. 35, 425 (2004).

    Google Scholar 

  2. G. I. Kosenko, C. Shen, and Y. Abe, JNRS 3, 19 (2002); C. Shen, G. Kosenko, and Y. Abe, Phys. Rev. C 66, 061602(R) (2002).

    Google Scholar 

  3. D. H. E. Gross and H. Kalinowski, Phys. Rep. 45, 175 (1978).

    Article  ADS  Google Scholar 

  4. P. Fröbrich, Phys. Rep. 116, 337 (1984).

    Article  ADS  Google Scholar 

  5. J. Marten and P. Fröbrich, Nucl. Phys. A 545, 854 (1992).

    Article  ADS  Google Scholar 

  6. W. J. Swiatecki, Nucl. Phys. A 376, 275 (1982).

    Article  ADS  Google Scholar 

  7. Y. Aritomo et al., Phys. Rev. C 55, R1011 (1997).

    Article  ADS  Google Scholar 

  8. F. A. Ivanyuk, G. I. Kosenko, Yu. Ts. Oganessian, and V. V. Pashkevich, AIP Conf. Proc. 425, 165 (1997).

    ADS  Google Scholar 

  9. N. V. Antonenko et al., Phys. Rev. C 51, 2635 (1995).

    Article  ADS  Google Scholar 

  10. P. Fong, Statistical Theory of Nuclear Fission (Gordon and Breach, New York, 1969).

    Google Scholar 

  11. P. Grange, H. S. Pauli, and H. A. Weindenmüller, Phys. Lett. B 88, 9 (1979).

    Article  ADS  Google Scholar 

  12. G. D. Adeev, I. I. Gontchar, V. V. Pashkevich, et al., Sov. J. Part. Nucl. 19, 529 (1988).

    Google Scholar 

  13. I. I. Gonchar, Phys. Part. Nucl. 26, 394 (1995).

    Google Scholar 

  14. M.G. Itkis and A. Ya. Rusanov, Phys. Part. Nucl. 29, 160 (1998).

    Article  Google Scholar 

  15. G. I. Kosenko, F. A. Ivanyuk, and V. V. Pashkevich, Phys. At. Nucl. 65, 1588 (2002).

    Article  Google Scholar 

  16. V. L. Litnevsky, G. I. Kosenko, F. A. Ivanyuk, and V. V. Pashkevich, Phys. At. Nucl. 74, 1001 (2011).

    Article  Google Scholar 

  17. V. L. Litnevsky, G. I. Kosenko, F. A. Ivanyuk, and V. V. Pashkevich, Phys. At. Nucl. 75, 37 (2012).

    Article  Google Scholar 

  18. V. L. Litnevsky, G. I. Kosenko, F. A. Ivanyuk, and V. V. Pashkevich, Phys. Rev. C 85, 034602 (2012).

    Article  ADS  Google Scholar 

  19. C.W. Shen et al., Sci. China Ser. G 52, 1458 (2009).

    Article  Google Scholar 

  20. D. Boilley, H. Lü, et al., Phys. Rev. C 84, 054608 (2011).

    Article  ADS  Google Scholar 

  21. V. V. Sargsyan et al., Phys. Rev. C. 80, 034606 (2009).

    Article  ADS  Google Scholar 

  22. W. Morawek et al., Z. Phys. A 341, 75 (1991).

    Article  ADS  Google Scholar 

  23. E. Vulgaris, L. Grodzins, S. G. Steadman, and R. Ledoux, Phys. Rev. C 33, 2017 (1986).

    Article  ADS  Google Scholar 

  24. K. Hartel, PhDThesis, Technical University (Munich, 1985).

  25. K.-T. Brinkmann, A. L. Caraley, B. J. Fineman, et al., Phys. Rev. C 50, 309 (1994).

    Article  ADS  Google Scholar 

  26. I. V. Pokrovski et al., in Proceedings of the International Conference on Nuclear Physics, Nuclear Shells-50, Dubna, Russia, 21–24 Apr. 1999, Ed. by Yu. Ts. Oganessian and R. Kolpakchieva (World Sci., Singapore, 2000), p. 105.

    Google Scholar 

  27. A. Ya. Rusanov, M. G. Itkis, N. A. Kondrat’ev, et al., Phys. At. Nucl. 71, 956 (2008).

    Article  Google Scholar 

  28. Yu. Ts. Oganessian, V. K. Utyonkov, Yu. V. Lobanov, et al., Phys. Rev. C 64, 054606-1 (2001).

    ADS  Google Scholar 

  29. A. J. Pacheco et al., Phys. Rev. C 45, 2861 (1992).

    Article  ADS  Google Scholar 

  30. C. R. Morton et al., Phys. Rev. C 60, 044608 (1999).

    Article  ADS  Google Scholar 

  31. V. V. Pashkevich, Nucl. Phys. A 169, 275 (1971).

    Article  ADS  Google Scholar 

  32. Y. Abe, S. Ayik, P.-G. Reinhard, and E. Suraud, Phys. Rep. 275, 49 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  33. A. S. Iljinov et al., Nucl. Phys. A 543, 517 (1992).

    Article  ADS  Google Scholar 

  34. W. D. Myers, and W. J. Swiatecki, Ark. Fys. 36, 343 (1967).

    Google Scholar 

  35. V. M. Strutinsky, Nucl. Phys. A 95, 420 (1967); 122, 1 (1968).

    Article  ADS  Google Scholar 

  36. M. Brack, J. Damgaard, A. S. Jensen et al., Rev.Mod. Phys. 44, 320 (1972).

    Article  ADS  Google Scholar 

  37. A. V. Ignatyuk, G. N. Smirenkin, and A. S. Tishin, Sov. J. Nucl. Phys. 21, 255 (1975).

    Google Scholar 

  38. H. Hofmann, Phys. Rep. 284, 137 (1997).

    Article  ADS  Google Scholar 

  39. H. Hofmann, The Physics of Warm Nuclei With Analogies to Mesoscopic Systems (Oxford Univ. Press, New York, 2008).

    Google Scholar 

  40. F. A. Ivanyuk, in Proceedings of the International Conference on Nuclear Physics, Nuclear Shells-50, Dubna, Russia, 21–24 Apr. 1999, Ed. by Yu. Ts. Oganessian and R. Kolpakchieva (World Sci., Singapore, 2000), p. 456.

    Google Scholar 

  41. F. A. Ivanyuk and H. Hofmann, Nucl. Phys. A 657, 19 (1999).

    Article  ADS  Google Scholar 

  42. R. W. Hasse and W. D. Myers, Geometrical Relationships of Macroscopic Nuclear Physics (Springer-Verlag, Heidelberg, 1988).

    Book  Google Scholar 

  43. D. H. E. Gross, R. C. Nayak, and L. Satpathy, Z. Phys. A 299, 63 (1981).

    Article  ADS  Google Scholar 

  44. P. Fröbrich, B. Strack, and M. Durand, Nucl. Phys. A 406, 557 (1983).

    Article  ADS  Google Scholar 

  45. V. Yu. Denisov and N. A. Pilipenko, Phys. Rev. C 76, 014602 (2007).

    Article  ADS  Google Scholar 

  46. I.M. Sobol’, Monte Carlo Method (Nauka, Moscow, 1968) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Litnevsky.

Additional information

Original Russian Text © V.L. Litnevsky, G.I. Kosenko, F.A. Ivanyuk, V.V. Pashkevich, 2012, published in Yadernaya Fizika, 2012, Vol. 75, No. 12, pp. 1579–1591.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Litnevsky, V.L., Kosenko, G.I., Ivanyuk, F.A. et al. Allowance for the orientation of colliding ions in describing the synthesis of heavy nuclei. Phys. Atom. Nuclei 75, 1500–1512 (2012). https://doi.org/10.1134/S1063778812110142

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778812110142

Keywords

Navigation