Skip to main content
Log in

Attosecond Interferometry Involving Discrete States

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

In the paper we theoretically investigate the features of RABBITT (Reconstruction of Attosecond Beating By Interference of Two-photon Transitions) spectroscopy under conditions when transitions through discrete spectrum states play a significant role. Two approaches are applied in the article: the numerical solution of rate equations with continuum discretization and the perturbation theory up to the third order in amplitude. Both approaches use transition matrix elements and photoionization amplitudes obtained by the high-precision R-matrix method. Within the framework of these approaches, photoelectron spectra, the amplitude and phase of RABBITT oscillations were obtained, and the effect of the seed optical field intensity and detuning from a resonance upon excitation of discrete states was studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. M. Lewenstein, Ph. Balcou, M. Yu. Ivanov, et al., Phys. Rev. A 49, 2117 (1994).

    Article  ADS  Google Scholar 

  2. V. V. Strelkov, V. T. Platonenko, A. F. Sterzhantov, and M. Yu. Ryabikin, Phys. Usp. 59, 425 (2016).

    Article  ADS  Google Scholar 

  3. F. Krausz and M. Ivanov, Rev. Mod. Phys. 81, 163 (2009).

    Article  ADS  Google Scholar 

  4. P. M. Paul, E. S. Toma, P. Breger, et al., Science (Washington, DC, U. S.) 292, 1689 (2001).

    Article  ADS  Google Scholar 

  5. R. Pazourek, S. Nagele, and J. Burgdörfer, Faraday Discuss 163, 353 (2013).

    Article  ADS  Google Scholar 

  6. J. Vos, L. Cattaneo, S. Patchkovskii, et al., Science (Washington, DC, U. S.) 360, 1326 (2018).

    Article  ADS  Google Scholar 

  7. M. Ossiander, J. Riemensberger, S. Neppl, et al., Nature (London, U.K.) 361, 374 (2018).

    Article  ADS  Google Scholar 

  8. G. Sansone, E. Benedetti, F. Calegari, et al., Science (Washington, DC, U. S.) 314, 443 (2006).

    Article  ADS  Google Scholar 

  9. E. Goulielmakis, M. Schultze, M. Hofstetter, et al., Science (Washington, DC, U. S.) 320, 1614 (2008).

    Article  ADS  Google Scholar 

  10. R. Löpez-Martens, K. Varjú, P. Johnsson, et al., Phys. Rev. Lett. 94, 033001 (2005).

  11. V. V. Strelkov, E. Mével, and E. Constant, New J. Phys. 10, 083040 (2008).

  12. E. Constant, V. D. Taranukhin, A. Stolow, and P. B. Corkum, Phys. Rev. A 56, 3870 (1997).

    Article  ADS  Google Scholar 

  13. M. Hentschel, R. Kienberger, Ch. Spielmann, et al., Nature (London, U.K.) 414, 509 (2001).

    Article  ADS  Google Scholar 

  14. J. Itatani, F. Quéré, G. L. Yudin, et al., Phys. Rev. Lett. 88, 173903 (2002).

  15. M. Schultze, M. Fieß, N. Karpowicz, et al., Science (Washington, DC, U. S.) 328, 1658 (2010).

    Article  ADS  Google Scholar 

  16. Y. Mairesse, A. de Bohan, L. J. Frasinski, et al., Science (Washington, DC, U. S.) 302, 1540 (2003).

    Article  ADS  Google Scholar 

  17. K. Klünder, J. M. Dahlström, M. Gisselbrecht, et al., Phys. Rev. Lett. 106, 143002 (2011).

  18. L. Cattaneo, J. Vos, M. Lucchini, et al., Opt. Express 24, 29060 (2016).

    Article  ADS  Google Scholar 

  19. V. Véniard, R. Taïeb, and A. Maquet, Phys. Rev. A 54, 721 (1996).

    Article  ADS  Google Scholar 

  20. N. B. Delone and V. P. Krainov, Nonlinear Ionization of Atoms by Laser Radiation (Fizmatlit, Moscow, 2001) [in Russian].

    Google Scholar 

  21. M. Isinger, D. Busto, S. Mikaelsson, et al., Phil. Trans. R. Soc. London, Ser. A 377, 20170475 (2019).

  22. J. Benda, Z. Mašín, and J. D. Gorfinkiel, Phys. Rev. A 105, 053101 (2022).

  23. E. Lindroth and J. M. Dahlström, Phys. Rev. A 96, 013420 (2017).

  24. J. Vinbladh, J. M. Dahlström, and E. Lindroth, Phys. Rev. A 100, 043424 (2019).

  25. P. K. Maroju, C. Grazioli, M. D. Fraia, et al., Nature (London, U.K.) 578, 386 (2020).

    Article  ADS  Google Scholar 

  26. A. Harth, N. Douguet, K. Bartschat, et al. Phys. Rev. A 99, 023410 (2019).

  27. A. S. Kheifets and A. W. Bray, Phys. Rev. A 103, L011101 (2021).

  28. D. Bharti, D. Atri-Schuller, G. Menning, et al., Phys. Rev. A 103, 022834 (2021).

  29. A. Kheifets, Atoms 9, 66 (2021).

    Article  ADS  Google Scholar 

  30. J. M. Dahlström, A. L’Huillier, and J. Mauritsson, J. Phys. B 44, 095602 (2011).

  31. B. I. Schneider, K. R. Hamilton, and K. Bartschat, Atoms 10, 26 (2022).

    Article  Google Scholar 

  32. O. Zatsarinny, Comput. Phys. Commun. 174, 273 (2006).

    Article  ADS  Google Scholar 

  33. T. Mercouris, Y. Komninos, S. Dionissopoulou, and C. A. Nicolaides, J. Phys. B 29, 13 (1996).

    Article  ADS  Google Scholar 

  34. S. A. Novikov and A. N. Hopersky, J. Phys. B 44, 235001 (2011).

  35. M. Swoboda, T. Fordell, K. Klünder, et al., Phys. Rev. Lett. 104, 103003 (2010).

  36. D. M. Villeneuve, P. Hockett, M. J. J. Vrakking, and H. Niikura, Science (Washington, DC, U. S.) 356, 1150 (2017).

    Article  Google Scholar 

  37. K. R. Hamilton, K. Bartschat, M. Moioli, et al., in Proceedings of the MPS-2022 International Conference on Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces, 13, Turku, Finland, 2022.

  38. M. Kotur, D. Guenot, Á. Jiménez-Galán, et al., Nat. Commun. 7, 10566 (2016).

    Article  ADS  Google Scholar 

  39. V. Gruson, L. Barreau, Á. Jiménez-Galán, et al., Science (Washington, DC, U. S.) 354, 734 (2016).

    Article  ADS  Google Scholar 

  40. M. A. Fareed, V. V. Strelkov, M. Singh, et al., Phys. Rev. Lett. 121, 023201 (2018).

  41. Á. Jiménez-Galán, L. Argenti, and F. Martín, Phys. Rev. Lett. 113, 263001 (2014).

  42. B. Ghomashi, N. Douguet, and L. Argenti, Phys. Rev. A 99, 053407 (2019).

  43. D. A. Varshalovich, A. N. Moskalev and V. K. Khersonskii, Quantum Theory of Angular Momentum (World scientific, Singapore, 1988; Fizmatlit, Moscow, 2017).

  44. I. I. Sobelman, Atomic Spectra and Radiative Transitions (Springer, Berlin, 1992).

    Book  Google Scholar 

  45. S. N. Yudin, S. M. Burkov, A. N. Grum-Grzhimajlo, M. D. Kiselev, and V. I. Severinenko, State Registration Certificate No. 2021681060 (2021).

  46. M. M. Popova, E. V. Gryzlova, M. D. Kiselev, and A. N. Grum-Grzhimailo, Symmetry 13, 1015 (2021).

    Article  ADS  Google Scholar 

  47. A. Kramida, Yu. Ralchenko, J. Reader, and NIST ASD Team, NIST Atomic Spectra Database, Vers. 5.8 (Natl. Inst. Stand. Technol., Gaithersburg, MD, 2020). https://physics.nist.gov/asd. Accessed October 3, 2022.

  48. C. F. Fischer, T. Brage, and P. Jonsson, Computational Atomic Structure: An MCHF Approach (IOP Publ., Bristol, 1997).

    MATH  Google Scholar 

  49. V. V. Balashov, A. N. Grum-Grzhimailo, and N. M. Kabachnik, Polarization and Correlation Phenomena in Atomic Collisions: A Practical Theory Course (Kluwer Academic/Plenum, New York, 2000).

    Book  Google Scholar 

  50. W. Gordon, Ann. Phys. 394, 1031 (1929).

    Article  Google Scholar 

  51. N. L. Manakov, S. I. Marmo, and A. A. Krylovetsky, J. Exp. Theor. Phys. 92, 37 (2001).

    Article  ADS  Google Scholar 

  52. D. Busto, J. Vinbladh, S. Zhong, et al., Phys. Rev. Lett. 123, 133201 (2019).

  53. N. Levinson, Mat. Fys. Medd. K. Dan. Vidensk. Selsk. 25, 9 (1949).

    Google Scholar 

  54. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Elsevier, Amsterdam, 2013; Fizmatlit, Moscow, 2004).

Download references

ACKNOWLEDGMENTS

The studies in Sections 2–4 are supported by the Russian Foundation for Basic Research (RFBR) under project no. 20-52-12023 and the Ministry of Science and Higher Education of the Russian Federation (project no. 0818-2020-0005) with the use of computational resources of the Shared Services “Data Center of the Far-Eastern Branch of the Russian Academy of Sciences”. The studies in section 5 are supported by the Russian Science Foundation (project no. 21-42-04412).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Popova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popova, M.M., Yudin, S.N., Gryzlova, E.V. et al. Attosecond Interferometry Involving Discrete States. J. Exp. Theor. Phys. 136, 259–268 (2023). https://doi.org/10.1134/S1063776123030044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776123030044

Navigation