Skip to main content
Log in

Dynamics of the order parameter and the potential of the hydrogen bond in a ferroelectric DKDP crystal

  • Order, Disorder, and Phase Transition in Condensed System
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Within a pseudospin model of a KD2PO4 crystal, the relaxation time of the average pseudospin (the order parameter) in the mean-field approximation depends on the activation energy of the jump of a deuteron between the minima of the hydrogen bond potential, the average equilibrium value of the pseudospin, and the dielectric susceptibility. Calculating the average equilibrium spin and the susceptibility within the four-particle cluster approximation and fitting the data for the width of the central peak from a Raman scattering experiment, we numerically estimate the activation energy. For the same values of the parameters of the cluster method, the calculated inverse relaxation time is in good agreement with the data of ultrasonic measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Lines and A. Glass, Principles and Applications of Ferroelectrics and Related Materials (Oxford University Press, Oxford, 1977; Mir, Moscow, 1981).

    Google Scholar 

  2. G. A. Jeffry and W. Saenger, Hydrogen Bonding in Biological Structures (Springer-Verlag, Berlin, 1991).

    Book  Google Scholar 

  3. V. A. Abalmassov, A. M. Pugachev, and N. V. Surovtsev, Phys. Solid State 53(7), 1371 (2011).

    Article  ADS  Google Scholar 

  4. V. K. Malinovsky, A. M. Pugachev, and N. V. Surovtsev, Phys. Solid State 50(6), 1137 (2008).

    Article  ADS  Google Scholar 

  5. E. Litov and E. A. Uehling, Phys. Rev. B: Solid State 1, 3713 (1970).

    Article  ADS  Google Scholar 

  6. V. G. Vaks, Introduction to the Microscopic Theory of Ferroelectrics (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  7. V. A. Strukov and A. P. Levanyuk, Ferroelectric Phenomena in Crystals: Physical Foundations (Nauka, Moscow, 1983; Springer-Verlag, Berlin, 1998).

    Google Scholar 

  8. R. J. Glauber, J. Math. Phys. 4, 294 (1963).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. R. R. Levitskii, I. R. Zachek, A. S. Vdovych, and S. I. Sorokov, Condens. Matter Phys. 12, 75 (2009).

    Article  Google Scholar 

  10. K. Yoshimitsu and T. Matsubara, Prog. Theor. Phys. Suppl. 109, 36 (1968).

    Google Scholar 

  11. R. M. Hill and S. K. Ichiki, Phys. Rev. 130, 150 (1963).

    Article  ADS  Google Scholar 

  12. S. Yoshioka, Y. Tsujimi, and T. Yagi, Solid State Commun. 106, 577 (1998).

    Article  ADS  Google Scholar 

  13. T. Hikita, Y. Jiang, A. Satoh, and K. Itoh, Ferroelectrics 217, 223 (1998).

    Article  Google Scholar 

  14. W. P. Mason, Phys. Rev. 72, 854 (1947).

    Article  ADS  Google Scholar 

  15. R. Blinc and S. Svetina, Phys. Rev. 147, 430 (1966).

    Article  ADS  Google Scholar 

  16. R. Blinc, Ferroelectrics 301, 3 (2004).

    Article  Google Scholar 

  17. V. A. Abalmassov and A. S. Yurkov, Phys. Solid State 54(5), 984 (2012).

    Article  ADS  Google Scholar 

  18. H. B. Silsbee, E. A. Uehling, and V. H. Schmidt, Phys. Rev. A 133, 165 (1964).

    ADS  Google Scholar 

  19. V. H. Schmidt, Phys. Rev. 164, 749 (1967).

    Article  ADS  Google Scholar 

  20. R. Kind, P. M. Cereghetti, C. A. Jeitziner, B. Zalar, J. Dolinsek, and R. Blinc, Phys. Rev. Lett. 88, 195501 (2002).

    Article  ADS  Google Scholar 

  21. R. Blinc and B. Zeks, Ferroelectrics 72, 193 (1987).

    Article  Google Scholar 

  22. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 10: E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics (Nauka, Moscow, 2001; Butterworth-Heinemann, Oxford, 2002); L. D. Landau and I. M. Khalatnikov, Dokl. Akad. Nauk SSSR XCVI (3), 469 (1954).

  23. S. Torstveit, Phys. Rev. B: Condens. Matter 20, 4431 (1979).

    Article  ADS  Google Scholar 

  24. V. L. Ginzburg, A. P. Levanyuk, and A. A. Sobyanin, Phys. Rep. 57, 151 (1980).

    Article  ADS  Google Scholar 

  25. R. J. Nelmes, Z. Tun, and W. F. Kuhs, Ferroelectrics 71, 125 (1987).

    Article  Google Scholar 

  26. M. C. Lawrence and G. N. Robertson, Ferroelectrics 34, 179 (1981).

    Article  Google Scholar 

  27. H. Mashiyama, J. Korean Phys. Soc. 46, 63 (2005).

    Google Scholar 

  28. G. Reiter, A. Shukla, P. M. Platzman, and J. Mayers, New J. Phys. 10, 013016 (2008).

    Article  ADS  Google Scholar 

  29. Y. Yamada and S. Ikeda, J. Phys. Soc. Jpn. 63, 3691 (1994).

    Article  ADS  Google Scholar 

  30. Y. G. Hao, X. Y. Sun, and N. S. Dalal, Ferroelectrics 132, 165 (1992).

    Article  Google Scholar 

  31. Q. Zhang, F. Chen, N. Kioussis, S. G. Demos, and H. B. Radousky, Phys. Rev. B: Condens. Matter 65, 024108 (2001).

    Article  ADS  Google Scholar 

  32. B. Silvi, Z. Latajka, and H. Ratajczak, Ferroelectrics 150, 303 (1993).

    Article  Google Scholar 

  33. S. Koval, J. Kohannof, J. Lasave, G. Colizzi, and R. L. Migoni, Phys. Rev. B: Condens. Matter 71, 184102 (2005).

    Article  ADS  Google Scholar 

  34. G. Reiter, J. Mayers, and P. Platzman, Phys. Rev. Lett. 89, 135505 (2002).

    Article  ADS  Google Scholar 

  35. V. H. Schmidt and E. A. Uehling, Phys. Rev. 126, 447 (1962).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Abalmassov.

Additional information

Original Russian Text © V.A. Abalmassov, A.M. Pugachev, N.V. Surovtsev, 2013, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2013, Vol. 143, No. 2, pp. 322–328.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abalmassov, V.A., Pugachev, A.M. & Surovtsev, N.V. Dynamics of the order parameter and the potential of the hydrogen bond in a ferroelectric DKDP crystal. J. Exp. Theor. Phys. 116, 280–285 (2013). https://doi.org/10.1134/S1063776113020076

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776113020076

Keywords

Navigation