Skip to main content
Log in

Correlation energies in distorted 3d-t 2g perovskite oxides

  • Low-Temperature Solid-State Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Using an effective low-energy Hamiltonian derived from the first-principles electronic structure calculations for the narrow t 2g bands of YTiO3, LaTiO3, YVO3, and LaVO3, we evaluate the contributions of the correlation energy E c to the stability of different magnetic structures that can be realized in these distorted perovskite oxides. We consider two approximations for E c that are based on regular perturbation theory expansion around a nondegenerate Hartree-Fock ground state. One is the second order of perturbation theory, which allows comparing the effects of local and nonlocal correlations. The other is the local t-matrix approach, which allows treating some higher-order contributions to E c . The correlation effects systematically improve the agreement with the experimental data and additionally stabilize the experimentally observed G- and C-type antifer-romagnetic (AFM) structures in YVO3 and LaVO3, although the absolute magnitude of the stabilization energy is sensitive to the level of approximations and is somewhat smaller in the t-matrix method. The nonlocal correlations additionally stabilize the ferromagnetic ground state in YTiO3 and the C-type AFM ground state in LaVO3. Among two inequivalent transition-metal sites in the monoclinic structure, the local correlations are stronger at the sites with the least distorted environment. Limitations of the regular perturbation-theory expansion for LaTiO3 are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. A. Maclean, H.-N. Ng, and J. E. Greedan, J. Solid State Chem. 30, 35 (1979); M. Itoh, M. Tsuchiya, H. Tanaka, and K. Motoya, J. Phys. Soc. Jpn. 68, 2783 (1999); J. Akimitsu, H. Ichikawa, N. Eguchi, et al., J. Phys. Soc. Jpn. 70, 3475 (2001); C. Ulrich, G. Khaliullin, M. Reehuis, et al., Phys. Rev. Lett. 89, 167202 (2002); F. Iga, M. Tsubota, M. Sawada, et al., Phys. Rev. Lett. 93, 257207 (2004).

    Article  ADS  Google Scholar 

  2. B. Keimer, D. Casa, A. Ivanov, et al., Phys. Rev. Lett. 85, 3946 (2000); M. Cwik, T. Lorenz, J. Baier, et al., Phys. Rev. B 68, 060401(R) (2003).

    Article  ADS  Google Scholar 

  3. Y. Ren, T. T. M. Palstra, D. I. Khomskii, et al., Nature 396, 441 (1998); G. R. Blake, T. T. Palstra, Y. Ren, et al., Phys. Rev. B 65, 174112 (2002); A. A. Tsvetkov, F. P. Mena, P. H. M. van Loosdrecht, et al., Phys. Rev. B 69, 075110 (2004); C. Ulrich, G. Khaliullin, J. Sirker, et al., Phys. Rev. Lett. 91, 257202 (2003).

    Article  ADS  Google Scholar 

  4. V. G. Zubkov, G. V. Bazuev, V. A. Perelyaev, and G. P. Shveikin, Sov. Phys. Solid State 15, 1079 (1973); P. Bordet, C. Chaillout, M. Marezio, et al., J. Solid State Chem. 106, 235 (1993).

    Google Scholar 

  5. H. Sawada and K. Terakura, Phys. Rev. B 58, 6831 (1998); Z. Fang and N. Nagaosa, Phys. Rev. Lett. 93, 176404 (2004).

    Article  ADS  Google Scholar 

  6. M. Mochizuki and M. Imada, Phys. Rev. Lett. 91, 167203 (2003); R. Schmitz, O. Entin-Wohlman, A. Aharony, et al., Phys. Rev. B 71, 144412 (2005).

  7. G. Khaliullin and S. Maekawa, Phys. Rev. Lett. 85, 3950 (2000).

    Article  ADS  Google Scholar 

  8. G. Khaliullin and S. Okamoto, Phys. Rev. Lett. 89, 167 201 (2002); P. Horsch, G. Khaliullin, and A. M. Oleś, Phys. Rev. Lett. 91, 257203 (2003).

  9. Y. Imai, I. Solovyev, and M. Imada, Phys. Rev. Lett. 95, 176 405 (2005).

    Google Scholar 

  10. I. V. Solovyev, Phys. Rev. B 73, 155117 (2006).

    Google Scholar 

  11. I. V. Solovyev, Phys. Rev. B 74, 054412 (2006).

    Google Scholar 

  12. I. V. Solovyev, Phys. Rev. B 69, 134403 (2004).

    Google Scholar 

  13. J. Friedel and C. M. Sayers, J. Phys. (Paris) 38, 697 (1977); F. Kajzar and J. Friedel, J. Phys. (Paris) 39, 397 (1978); G. Treglia, F. Ducastelle, and D. Spanjaard, J. Phys. (Paris) 41, 281 (1980).

    Article  Google Scholar 

  14. K. A. Brueckner and C. A. Levinson, Phys. Rev. 97, 1344 (1955).

    Article  MATH  ADS  Google Scholar 

  15. V. Galitskiĭ, Zh. Éksp. Teor. Fiz. 34, 151 (1958) [Sov. Phys. JETP 7, 104 (1958)].

    Google Scholar 

  16. J. Kanamori, Prog. Theor. Phys. 30, 275 (1963).

    Article  MATH  ADS  Google Scholar 

  17. I. V. Solovyev, Z. V. Pchelkina, and V. I. Anisimov, Phys. Rev. B 75, 045110 (2007).

    Google Scholar 

  18. O. K. Andersen, Phys. Rev. B 12, 3060 (1975); O. K. Andersen, Z. Pawlowska, and O. Jepsen, Phys. Rev. 34, 5253 (1986).

    Article  ADS  Google Scholar 

  19. A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  20. Y. Otsuka and M. Imada, J. Phys. Soc. Jpn. 75, 124707 (2006).

Download references

Author information

Authors and Affiliations

Authors

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solovyev, I.V. Correlation energies in distorted 3d-t 2g perovskite oxides. J. Exp. Theor. Phys. 105, 46–54 (2007). https://doi.org/10.1134/S1063776107070114

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776107070114

PACS numbers

Navigation