Skip to main content
Log in

Solution-Grown trans-Stilbene Single Crystal and Its Scintillation Properties

  • PHYSICAL PROPERTIES OF CRYSTALS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

trans-Stilbene single crystals are of great interest for researchers as scintillators characterized by a high specific light yield. Bulk trans-stilbene single crystals have been grown from an anisole solution. The transmission and photoluminescence spectra have been recorded, and the single-crystal photoluminescence quenching kinetics has been investigated. The scintillation properties of an element (17 × 12 × 5 mm in size) prepared from a grown trans-stilbene crystal, irradiated by γ radiation and X rays, have also been investigated. It is shown that the specific light yield of the obtained crystal is no less than that of a scintillation detector based on a trans-stilbene crystal (31.5 × 10 mm) grown from melt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. J. B. Birks, The Theory and Practice of Scintillation Counting: International Series of Monographs on Electronics and Instrumentation (Pergamon, 1967).

    Google Scholar 

  2. B. M. Krasovitskii and B. M. Bolotin, Organic Luminophores (Khimiya, Moscow, 1984) [in Russian].

    Google Scholar 

  3. T. E. Gorbacheva, N. Z. Galunov, I. V. Lazarev, et al., J. Appl. Spectrosc. 81, 164 (2014). https://doi.org/10.1007/s10812-014-9904-y

    Article  ADS  Google Scholar 

  4. A. Arulchakkaravarthi, C. K. Laksmanaperumal, P. Santhanaraghavan, et al., J. Cryst. Growth 246, 85 (2002). https://doi.org/10.1016/S0022-0248(02)01696-2

    Article  ADS  Google Scholar 

  5. Q. Ai, P. Chen, Y. Feng, and Y. Xu, AIP Conf. Proc. 1879 (2017). https://doi.org/10.1063/1.5000464

  6. S. Yamato, A. Yamaji, S. Kurosawa, et al., Opt. Mater. 94, 58 (2019). https://doi.org/10.1016/j.optmat.2019.04.051

    Article  ADS  Google Scholar 

  7. I. H. Hong, K. J. Tan, M. Toh, et al., J. Cryst. Growth 363, 61 (2013). https://doi.org/10.1016/j.jcrysgro.2012.10.002

    Article  ADS  Google Scholar 

  8. S. Bhukkal and B. Kumar, J. Cryst. Growth 535, 125534 (2020). https://doi.org/10.1016/j.jcrysgro.2020.125534

  9. S. V. Budakovskii, I. P. Krainov, T. R. Mnatsakanova, and V. F. Tkachenko, Patent SU No. 948171 A1 (State Committee for Inventions and Discoveries, 1998).

  10. N. P. Zaitseva, J. Newby, S. Hamel, et al., Hard X-ray, Gamma-Ray, and Neutron Detector Physics, XI (2009), Vol. 7449, p. 744911. https://doi.org/10.1117/12.829870

  11. N. Zaitseva, L. Carman, A. Glenn, et al., J. Cryst. Growth 314, 163 (2011). https://doi.org/10.1016/j.jcrysgro.2010.10.139

    Article  ADS  Google Scholar 

  12. L. Carman, N. Zaitseva, H. P. Martinez, et al., J. Cryst. Growth 368, 56 (2013). https://doi.org/10.1016/j.jcrysgro.2013.01.019

    Article  ADS  Google Scholar 

  13. R. Katoh, S. Katoh, A. Furube, et al., J. Phys. Chem. C 113, 2961 (2009). https://doi.org/10.1021/jp807684m

    Article  Google Scholar 

  14. J. B. Birks, Photophysics of Aromatic Molecules (Wiley-Interscience, London, 1970).

    Google Scholar 

  15. E. E. Klimenkov, Yu. A. Kashchuk, Krasil’nikov, et al., Prib. Tekh. Eksp. 2, 35 (2004).

    Google Scholar 

  16. V. L. Manomenova, M. N. Stepnova, V. V. Grebenev, et al., Crystallogr. Rep. 58, 513 (2013).

    Article  ADS  Google Scholar 

  17. E. B. Rudneva, V. L. Manomenova, and A. E. Voloshin, Crystallogr. Rep. 63, 1005 (2018).

    Article  ADS  Google Scholar 

  18. http://www.lnhb.fr/nuclear-data/nuclear-data-table/

  19. J. Harada and K. Ogawa, J. Am. Chem. Soc. 123, 10884 (2001). https://doi.org/10.1021/ja011197d

    Article  Google Scholar 

  20. W. Kaminsky, J. Appl. Crystallogr. 40, 382 (2007). https://doi.org/10.1107/S0021889807003986

    Article  Google Scholar 

  21. H. Klapper, N. Zaitseva, and L. Carman, J. Cryst. Growth 429, 74 (2015). https://doi.org/10.1016/j.jcrysgro.2015.07.012

    Article  ADS  Google Scholar 

  22. D. C. Tranca and A. A. Neufeld, J. Chem. Phys. 130, 141102 (2009). https://doi.org/10.1063/1.3116786

  23. P. Harihar, H. Chen, and W. J. Stapor, Nucl. Instrum. Methods Phys. Res. A 345, 500 (1994). https://doi.org/10.1016/0168-9002(94)90506-1

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation (grant no. 075-15-2021-1362) and performed using equipment of the Shared Research Center “Structural Diagnostics of Materials” of the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. S. Lyasnikova or V. A. Postnikov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyasnikova, M.S., Kulishov, A.A., Yurasik, G.A. et al. Solution-Grown trans-Stilbene Single Crystal and Its Scintillation Properties. Crystallogr. Rep. 68, 628–636 (2023). https://doi.org/10.1134/S1063774523600278

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774523600278

Navigation