Skip to main content
Log in

Comparison of the Possibilities of Inelastic Scattering of Synchrotron Radiation and Neutrons for Studying Atomic, Molecular, and Magnetic Dynamics in Condensed Matter

  • REVIEWS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The possibilities of synchrotron and neutron methods for studying the atomic and magnetic dynamics of condensed matter had been discussed previously in the literature. Since then, an extensive material has been accumulated in this field, correspondingly, many questions must be reconsidered and some statements must be corrected. Some latest achievements in this field have been reviewed and an attempt is made to perform a comparative analysis of the techniques based on these two types of radiation, which have proved their efficiency. This review pretends in no way to be exhaustive and is not free of subjectivism, caused by the personal scientific interests of the author. Nonetheless, it will be useful for the researchers planning to use the complementarity of these methods in their studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. V. Belushkin, D. P. Kozlenko, and A. V. Rogachev, Poverkhn.: Rentgenovskie, Sinkhrotronnye Neitr. Issled., No. 9, 18 (2011). https://doi.org/10.1134/S1027451011090047

  2. M. d’Astuto and M. Krisch, Collection SFN 10, 487 (2010). https://doi.org/10.1051/sfn/2010010

    Article  Google Scholar 

  3. A. Q. R. Baron, Synchrotron Light Sources and Free Electron Lasers, Ed. by E. J. Jaeschke et al. (Springer, Switzerland, 2016; revised, 2018), p. 1643. https://arxiv.org/ftp/arxiv/papers/1504/1504.01098.pdf.

  4. P. G. O’Shea and H. P. Freund, Science 292 (5523), 1853 (2001). https://doi.org/10.1126/science.1055718

    Article  ADS  Google Scholar 

  5. I. M. Kempson, K. P. Kirkbride, W. M. Skinner, and J. Coumbaros, Talanta 67 (2), 286 (2005). https://doi.org/10.1016/j.talanta.2005.05.026

    Article  Google Scholar 

  6. H. A. Durr, T. Eimuller, H. J. Elmers, et al., IEEE Trans. Magn. 45 (1), 15 (2009). https://doi.org/10.1109/TMAG.2008.2006667

    Article  ADS  Google Scholar 

  7. J. S. Gardner, G. Ehlers, A. Faraone, and V. G. Sakai, Nature Rev. Phys. 2, 103 (2020). https://doi.org/10.1038/s42254-019-0128-1

    Article  ADS  Google Scholar 

  8. M. d’Astuto, M. Calandra, S. Reich, et al., Phys. Rev. B 75, 174508 (2007). https://doi.org/10.1103/PhysRevB.75.174508

    Article  ADS  Google Scholar 

  9. D. Ueta, T. Kobuke, M. Yoshida, et al., Physica B 536, 21 (2018). https://doi.org/10.1016/j.physb.2017.09.110

    Article  ADS  Google Scholar 

  10. T. Burankova, R. Hempelmann, A. Wildes, and J. P. Embs, J. Phys. Chem. B 118, 14452 (2014). https://doi.org/10.1021/jp5092416

    Article  Google Scholar 

  11. S. F. Parker, D. Lennon, and P. W. Albers, Appl. Spectrosc. 65 (12), 1325 (2011). https://doi.org/10.1366/11-06456

    Article  ADS  Google Scholar 

  12. N. Dubrovinskaia, L. Dubrovinsky, N. A. Solopova, et al., Sci. Adv. 2 (7), e1600341 (2016). https://doi.org/10.1126/sciadv.1600341

    Article  ADS  Google Scholar 

  13. D. Kozlenko, S. Kichanov, E. Lukin, and B. Savenko, Crystals 8, 331 (2018). https://doi.org/10.3390/cryst8080331

    Article  Google Scholar 

  14. T. Hattori, A. Sano-Furukawa, S. Machida, et al., High Pressure Res. 39 (3), 417 (2019). https://doi.org/10.1080/08957959.2019.1624745

    Article  ADS  Google Scholar 

  15. A. Metz and M. Steiner, Neutron News 6 (3), 18 (1995). https://doi.org/10.1080/10448639508217695

    Article  Google Scholar 

  16. I. A. Zaliznyak and J. M. Tranquada, Strongly Correlated Systems. Experimental Techniques, Ed. by A. Avella and F. Mancini (Springer, Berlin, 2015), p. 205. https://doi.org/10.1007/978-3-662-44133-6_7

    Book  Google Scholar 

  17. P. A. Alekseev, Usp. Fiz. Nauk 187 (1), 65 (2017). https://doi.org/10.3367/UFNr.2016.04.037785

    Article  Google Scholar 

  18. S. Krannich, Y. Sidis, Lamago, et al., Nat. Commun. 6, 8961 (2015). https://doi.org/10.1038/ncomms9961

    Article  ADS  Google Scholar 

  19. P. P. Parshin, A. I. Chumakov, P. A. Alekseev, et al., JETP 123 (6), 1073 (2016).

    Article  ADS  Google Scholar 

  20. J. Kalt, M. Sternik, I. Sergueev, et al., Phys. Rev. B 98, 121409(R) (2018). https://doi.org/10.1103/PhysRevB.98.121409

  21. M. W. Haverkort, Phys. Rev. Lett. 105, 167404 (2010). https://doi.org/10.1103/PhysRevLett.105.167404

    Article  ADS  Google Scholar 

  22. L. J. P. Ament, M. van Veendaal, T. P. Devereaux, and J. van den Brink, Rev. Mod. Phys. 83, 705 (2011). https://doi.org/10.1103/RevModPhys.83.705

    Article  ADS  Google Scholar 

  23. J. van den Brink, Quantum Materials: Experiments and Theory Modeling and Simulation (Forschungszentrum Juelich, 2016), Vol. 6, p. 122. https://doi.org/10.1103/RevModPhys.83.705

  24. C. Jia, K. Wohlfeld, Y. Wang, et al., Phys. Rev. X 6, 021020 (2016). https://doi.org/10.1103/PhysRevX.6.021020

    Article  Google Scholar 

  25. A. S. Ivanov, Doctoral Dissertation in Physics and Mathematics (St. Petersburg Polytechnic University, St. Petersburg, 2017).

  26. L. Chaix, G. Ghiringheli, Y. Y. Peng, et al., Nat. Phys. 13, 952 (2017). https://doi.org/10.1038/nphys4157

    Article  Google Scholar 

  27. L. Yu, Z. Yamani, Y. Song, et al., Phys. Rev. X 8, 021056 (2018). https://doi.org/10.1103/PhysRevX.8.021056

    Article  Google Scholar 

  28. F. Weber, D. Parshall, L. Pintschovius, et al., Phys. Rev. B 98, 014516 (2018). https://doi.org/10.1103/PhysRevB.98.014516

    Article  ADS  Google Scholar 

  29. H. Suzuki, H. Gretarsson, H. Ishikawa, et al., Nat. Mater. 18, 563 (2019). https://doi.org/10.1038/s41563-019-0327-2

    Article  ADS  Google Scholar 

  30. J. Buhot, M. A. Measson, Y. Gallais, et al., Phys. Rev. B 91, 035129 (2015). https://doi.org/10.1103/PhysRevB.91.035129

    Article  ADS  Google Scholar 

  31. A. Jain, M. Krautloher, J. Porras, et al., Nat. Phys. 13, 633 (2017). https://doi.org/10.1038/nphys4077

    Article  Google Scholar 

  32. J. Kim, D. Casa, M. Upton, et al., Phys. Rev. Lett. 108, 177003 (2012). https://doi.org/10.1103/PhysRevLett.108.177003

    Article  ADS  Google Scholar 

  33. X. Lu, D. E. McNally, M. Moretti Sala, et al., Phys. Rev. Lett. 118, 027202 (2017). https://doi.org/10.1103/PhysRevLett.118.027202

    Article  ADS  Google Scholar 

  34. J. G. Vale, S. Calder, C. Donnerer, et al., Phys. Rev. Lett. 120, 227203 (2018). https://doi.org/10.1103/PhysRevLett.120.227203

    Article  ADS  Google Scholar 

  35. M. Rossi, C. Henriquet, J. Jacobs, et al., J. Synchrotron Radiat. 26 (5), 1725 (2019). https://doi.org/10.1107/S1600577519008877

    Article  Google Scholar 

  36. B. Wehinger, A. Bosak, K. Refson, et al., J. Phys. Condens. Matter 27, 305401 (2015). https://doi.org/10.1088/0953-8984/27/30/305401

    Article  Google Scholar 

  37. A. Bosak and M. Krisch, Phys. Rev. B 72, 224305 (2005). https://doi.org/10.1103/PhysRevB.72.224305

    Article  ADS  Google Scholar 

  38. M. E. Manley, J. R. Jeffries, and A. H. Said, Phys. Rev. B 85, 132301 (2012). https://doi.org/10.1103/PhysRevB.85.132301

    Article  ADS  Google Scholar 

  39. J. W. L. Pang, A. Chernatynskiy, B. C. Larson, et al., Phys. Rev. B 89, 115132 (2014). https://doi.org/10.1103/PhysRevB.89.115132

    Article  ADS  Google Scholar 

  40. S. Raymond, J. Bouchet, G. H. Lander, et al., Phys. Rev. Lett. 107, 136401 (2011). https://doi.org/10.1103/PhysRevLett.107.136401

    Article  ADS  Google Scholar 

  41. J. A. Schneeloch, Zh. Xu, J. Wen, et al., Phys. Rev. B 91, 064301 (2015). https://doi.org/10.1103/PhysRevB.91.064301

    Article  ADS  Google Scholar 

  42. M. P. Jiang, M. Trigo, I. Savic, et al., Nat. Commun. 7, 12291 (2016). https://doi.org/10.1038/ncomms12291

    Article  ADS  Google Scholar 

  43. M. E. Manley, D. L. Abernathy, R. Sahul, et al., Sci. Adv. 2, e1501814 (2016). https://doi.org/10.1126/sciadv.1501814

    Article  ADS  Google Scholar 

  44. M. Matsuura, T. Sasaki, S. Iguchi, et al., Phys. Rev. Lett. 123, 027601 (2019). https://doi.org/10.1103/PhysRevLett.123.027601

    Article  ADS  Google Scholar 

  45. A. Girard, H. Taniguchi, S. M. Souliou, et al., Phys. Rev. B 98, 134102 (2018). https://doi.org/10.1103/PhysRevB.98.134102

    Article  ADS  Google Scholar 

  46. J. Serrano, A. Bosak, M. Krisch, et al., Phys. Rev. Lett. 106, 205501 (2011). https://doi.org/10.1103/PhysRevLett.106.205501

    Article  ADS  Google Scholar 

  47. F. Caruso, M. Hoesch, P. Achatz, et al., Phys. Rev. Lett. 119, 017001 (2017). https://doi.org/10.1103/PhysRevLett.119.017001

    Article  ADS  Google Scholar 

  48. M. E. Manley, O. Hellman, N. Shulumba, et al., Nat. Commun. 10, 1928 (2019). https://doi.org/10.1038/s41467-019-09921-4

    Article  ADS  Google Scholar 

  49. F. Li, J. Shen, S. R. Parnell, et al., J. Appl. Crystallogr. 52, 755 (2019). https://doi.org/10.1107/S1600576719008008

    Article  Google Scholar 

  50. A. Gold-Parker, P. M. Gehring, J. M. Skelton, et al., PNAS 115 (47), 11905 (2018). https://doi.org/10.1073/pnas.1812227115

    Article  ADS  Google Scholar 

  51. T. J. Willis, D. G. Porter, D. J. Voneshen, et al., Sci. Rep. 8, 3210 (2018). https://doi.org/10.1038/s41598-018-21354-5

    Article  ADS  Google Scholar 

  52. A. Perrichon, M. Jimenez-Ruiz, L. Mazzei, et al., J. Mater. Chem. A 7, 17626 (2019). https://doi.org/10.1039/C9TA04056K

    Article  Google Scholar 

  53. P. Rought, C. Marsh, S. Pili, et al., Chem. Sci. 10, 1492 (2019). https://doi.org/10.1039/C8SC03022G

    Article  Google Scholar 

  54. D. Soloviov, Y. Q. Cai, D. Bolmatov, et al., PNAS 117 (9), 4749 (2020). https://doi.org/10.1073/pnas.1919264117

    Article  Google Scholar 

  55. A. de Francesco, L. Scaccia, R. B. Lennox, et al., Phys. Rev. E 99, 052504 (2019). https://doi.org/10.1103/PhysRevE.99.052504

    Article  ADS  Google Scholar 

  56. M. Grimaldo, H. Lopez, C. Beck, et al., J. Phys. Chem. Lett. 10, 1709 (2019). https://doi.org/10.1021/acs.jpclett.9b00345

    Article  Google Scholar 

  57. F. Foglia, R. Hazael, F. Meersman, et al., Sci. Rep. 9, 8716 (2019). https://doi.org/10.1038/s41598-019-44704-3

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Belushkin.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belushkin, A.V. Comparison of the Possibilities of Inelastic Scattering of Synchrotron Radiation and Neutrons for Studying Atomic, Molecular, and Magnetic Dynamics in Condensed Matter. Crystallogr. Rep. 67, 36–49 (2022). https://doi.org/10.1134/S1063774522010035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774522010035

Navigation