Skip to main content
Log in

Jahn–Teller Lattice Distortions and Asymmetric Electron Density Distribution in the Structure of TmB12 Dodecaboride in the Temperature Range of 85–293 K

  • STRUCTURE OF INORGANIC COMPOUNDS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The structure of single-crystal dodecaboride TmB12, which possess metallic properties, has been studied by X-ray diffraction at nine temperatures in the range of 85–293 K. Jahn–Teller distortions of the cubic lattice are revealed. They are found to cause an asymmetric electron density distribution in crystal. Static components of atomic displacements are selected, and characteristic Einstein and Debye temperatures are determined for thulium and boron atoms, respectively. Temperature dependences of interatomic distances are obtained. The problem of localizing conduction electrons by means of X-ray diffraction analysis is stated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. M. Glazer, J. Appl. Crystallogr. 35, 652 (2002).

    Article  Google Scholar 

  2. P. Coppens, X-Ray Charge Densities and Chemical Bonding (Oxford Univ. Press, Oxford, 1997).

    Google Scholar 

  3. J. M. Tranquada, H. Woo, T. G. Perring, et al., Nature 375, 561 (1995).

    Article  ADS  Google Scholar 

  4. E. H. Da Silva Neto, P. Aynajian, F. Frano, et al., Science 343, 393 (2014).

    Article  ADS  Google Scholar 

  5. S. Mori, C. H. Chen, S.-W. Cheong, et al., Nature 392, 473 (1998).

    Article  ADS  Google Scholar 

  6. N. Sluchanko, A. Bogach, N. Bolotina, et al., Phys. Rev. B 97, 035150 (2018).

    Article  ADS  Google Scholar 

  7. C. K. Johnson, Acta Crystallogr. A 25, 187 (1969).

    Article  ADS  Google Scholar 

  8. R. F. W. Bader, Atoms in Molecules. A Quantum Theory (Clarendon, Oxford, 1990).

    Google Scholar 

  9. N. B. Bolotina, A. P. Dudka, O. N. Khrykina, et al., J. Phys.: Condens. Matter 30, 265402 (2018).

    ADS  Google Scholar 

  10. S. Parkin and H. Hope, J. Appl. Crystallogr. 31, 945 (1998).

    Article  Google Scholar 

  11. A. P. Dudka, Crystallogr. Rep. 64 (1), 181 (2019).

    Article  ADS  Google Scholar 

  12. H. B. Bürgi and S. C. Capelli, Acta Crystallogr. A 56, 403 (2000).

    Article  Google Scholar 

  13. A. P. Dudka, N. B. Bolotina, and O. N. Khrykina, J. Appl. Crystallogr. 52, 690 (2019).

  14. N. E. Sluchanko, A. N. Azarevich, A. V. Bogach, et al., JETP 115, 509 (2012).

    Article  ADS  Google Scholar 

  15. I. Binder, S. LaPlaca, and B. Post, Boron Synthesis, Structure, and Properties, Ed. by J.A. Kohn (Plenum, New York, 1960), p. 86.

    Google Scholar 

  16. N. Sluchanko, A. Bogach, N. Bolotina, et al., Phys. Rev. B 97, 035150 (2018).

    Article  ADS  Google Scholar 

  17. N. E. Sluchanko, A. N. Azarevich, A. V. Bogach, et al., JETP 115, 509 (2012).

    Article  ADS  Google Scholar 

  18. A. P. Dudka, I. A. Verin, and E. S. Smirnova, Crystallogr. Rep. 61 (4), 692

  19. A. P. Dudka, M. Kh. Rabadanov, and A. A. Loshmanov, Kristallografiya 34 (4), 818 (1989).

    Google Scholar 

  20. P. J. Becker and P. Coppens, Acta Crystallogr. A 30, 129 (1974).

    Article  ADS  Google Scholar 

  21. A. Dudka, J. Appl. Crystallogr. 43, 27 (2010).

    Article  Google Scholar 

  22. Rigaku Oxford Diffraction, CrysAlisPro Software System, Version 1.171.39.46 (Rigaku Corporation, Oxford, UK, 2018).

  23. A. Dudka, J. Appl. Crystallogr. 40, 602 (2007).

    Article  MathSciNet  Google Scholar 

  24. V. Petricek, M. Dusek, and L. Palatinus, Z. Kristallogr. 229 (5), 345 (2014).

    Google Scholar 

  25. P. Coppens, J. Dam, S. Harkema, et al., Acta Crystallogr. A 40, 184 (1984).

    Article  Google Scholar 

  26. K. N. Trueblood, H.-B. Brgi, H. Burzlaff, et al., Acta Crystallogr. A 52, 770 (1996).

    Article  Google Scholar 

  27. A. P. Menushenkov, A. A. Yaroslavtsev, I. A. Zaluzhnyi, et al., JETP Lett. 98 (3), 165 (2013).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to N.E. Sluchanko for fruitful discussions and to V.N. Krasnorusskii for the help in sample preparation.

Experimental data were obtained using equipment of the Collective-Use Center of the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences.

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation within the State assignment for the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences in the part concerning the development of structural analysis technique. The investigation of the specific features of atomic displacements in TmB12 crystals was supported by the Russian Science Foundation (grant no. 17-12-01426).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Dudka.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dudka, A.P., Khrykina, O.N., Bolotina, N.B. et al. Jahn–Teller Lattice Distortions and Asymmetric Electron Density Distribution in the Structure of TmB12 Dodecaboride in the Temperature Range of 85–293 K. Crystallogr. Rep. 64, 737–742 (2019). https://doi.org/10.1134/S1063774519050079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774519050079

Navigation