Skip to main content
Log in

Synthesis, structure, spectroscopic investigations, and computational studies of optically pure β-ketoamide

  • Structure of Organic Compounds
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Chemical preparation, X-ray single crystal diffraction, IR and NMR spectroscopic investigations of a novel nonlinear optical organic compound (C17H22NO2Cl) are described. The compound crystallizes in the orthorhombic system with the non-centrosymmetric sp. gr. P212121. In the crystal structure, molecules are interconnected by N–H…O hydrogen bonds forming infinite chains along a axis. The Hirshfeld surface and associated fingerprint plots of the compound are presented to explore the nature of intermolecular interactions and their relative contributions in building the solid-state architecture. The molecular HOMO–LUMO compositions and their respective energy gaps are also drawn to explain the activity of the compound. The first hyperpolarizability βtot of the title compound is determined using DFT calculations. The optical properties are also investigated by UV–Vis absorption spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Serafin, P. Mazur, A. Bak, E. Laine, L. Tchertanov, J.-F. Mouscadet, and J. Polanski, Bioorg. Med. Chem. 19, 5000 (2011).

    Article  Google Scholar 

  2. X. Guo, F. Sunjoo, S. A. Jenkhe and M. D. Watson, J. Am. Chem. Soc. 131, 7206 (2009).

    Article  Google Scholar 

  3. U. C. Yoon, J. H. Oh, S. J. Lee, D. U. Kim and P. S. Mariano, Bull. Korean Chem. Soc. 13, 166 (1992).

    Google Scholar 

  4. Y. Shirato, J. Mater. Chem. 10, 1 (2000).

    Article  Google Scholar 

  5. W. Shen, Z. Li, and Y. Liu, Recent Pat. Chem. Eng. 1, 27 (2008).

    Article  Google Scholar 

  6. M. M. Sanchez Duque, O. Baslé, Y. Génisson, J. C. Plaquevent, X. Bugaut, T. Constantieux, and J. Rodriguez, Angew. Chem. 125, 14393 (2013).

    Article  Google Scholar 

  7. L. Lázár, A. Göblyös, F. Evanics, G. Bernáth, and F. Fülöp, Tetrahedron 54, 13639 (1998).

    Article  Google Scholar 

  8. K. N. Zelenin, V. V. Alekseyev, I. V. Ukraintsev, and I. V. Tselinsky, Prep. Proc. Int. 30, 53 (1998).

    Article  Google Scholar 

  9. A. Göblyös, L. Lázár, and F. Fülöp, Tetrahedron 58, 1011 (2002).

    Article  Google Scholar 

  10. O. Maloshitskaya, J. Sinkkonen, V. V. Ovcharenko, K. N. Zelenin, and K. Pihlaja, Tetrahedron 60, 6913 (2004).

    Article  Google Scholar 

  11. H. A. A. Abdel-Aziz, A. I. Mekawey, and K. M. Dawood, Eur. J. Med. Chem. 44, 3637 (2009).

    Article  Google Scholar 

  12. J. Liu, F. Jiang, X. Jiang, W. Zhang, J. Liu, W. Liu, and L. Fu, Eur. J. Med. Chem. 54, 879 (2012).

    Article  Google Scholar 

  13. Y. Shivaraj, M. H. Naveen, G. R. Vijayakumar, and D. B. A. Kumar. Des. J. Korean Chem. Soc. 57, 241 (2013).

    Article  Google Scholar 

  14. R. Touati, V. Ratovelomanana-Vidal, B. Ben Hassine, and J. P. Genêt, Tetrahedron: Asymmetry 17, 3400 (2006).

    Article  Google Scholar 

  15. K. Harms and S. Wocadlo, XCAD4 (Univ. of Marburg, Marburg, 1995).

    Google Scholar 

  16. G. M. Sheldrick, Acta Crystallogr. A 64, 112 (2008).

    Article  ADS  Google Scholar 

  17. L. J. Farrugia, J. Appl. Crystallogr. 32, 837 (1999).

    Article  Google Scholar 

  18. N. Zhanpelsov, M. Matsuoka, H. Yamashite, and M. Anpo, J. Phys. Chem. B 102, 6915 (1998).

    Article  Google Scholar 

  19. N. Niclasc, M. Dolg, H. Stoll, and H. Preuss, J. Chem. Phys. 102, 8942 (1995).

    Article  ADS  Google Scholar 

  20. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 09, Revision A.1 (Gaussian, Wallingford CT, 2009).

    Google Scholar 

  21. S. K. Wolff, D. J. Grimwood, J. J. McKinnon, M. J. Turner, D. Jayatilaka, and M. A. Spackman, CrystalEx-plorer 3.0 (Univ. of Western Australia, Perth, Australia, 2012).

    Google Scholar 

  22. F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, and R. Taylor, J. Chem. Soc. Perkin Trans. 2, 1 (1987).

    Article  Google Scholar 

  23. S.-I. Takekuma, H. Matsuoka, T. Minematsu, and H. Takekuma, Tetrahedron 66, 3004 (2010).

    Article  Google Scholar 

  24. Z. Spichal, V. Petricek, J. Pinkas, and M. Necas, Polyhedron 27, 283 (2008).

    Article  Google Scholar 

  25. I. S. Ignatyev, T. A. Kochina, V. V. Avrorin, V. V. Gurzhiy, and V. S. Fundamensky, J. Mol. Struct. 1094, 169 (2015).

    Article  ADS  Google Scholar 

  26. I. D. Brown, Acta Crystallogr. A 32, 24 (1976)

    Article  ADS  Google Scholar 

  27. A. Domenicano and P. Murray-Rust, Tetrahedron Lett. 24, 2283 (1979).

    Article  Google Scholar 

  28. M. A. Spackman and P. G. Byrom, Chem. Phys. Lett. 267, 215 (1997).

    Article  ADS  Google Scholar 

  29. I. Fleming, Frontier Orbitals, Organic Chemical Reactions (Wiley, London, 1973).

    Google Scholar 

  30. K. Fukui, Science 218, 747 (1982).

    Article  ADS  Google Scholar 

  31. L. Padmaja, C. Ravikumar, D. Sajan, I. H. Joe, V. S. Jayakumar, G. R. Pettit, and O. F. Nielsen, J. Raman Spectrosc. 40, 419 (2009).

    Article  ADS  Google Scholar 

  32. C. Ravikumar, I. H. Joe, and V. S. Jayakumar, Chem. Phys. Lett. 460, 552 (2008).

    Article  ADS  Google Scholar 

  33. I. Fleming, Frontier Orbitals and Organic Chemical Reactions (Wiley, New York, 1976).

    Google Scholar 

  34. K. Jug and Z. B. Maksic, in Theoretical Model of Chemical Bonding, Ed. by Z. B. Maksic (Springer, Berlin, 1991), Ch. 3.

  35. S. Fliszar, Charge Distributions and Chemical Effects (Springer, New York, 1983).

    Book  Google Scholar 

  36. P. E. Smith, J. Am. Chem. Soc. 113, 6029 (1991).

    Article  Google Scholar 

  37. J. Gao, J. Chem. Phys. 98, 1975 (1993).

    Google Scholar 

  38. P. Cieplak, J. Comp. Chem. 12, 1232 (1991).

    Article  Google Scholar 

  39. D. Arul Dhas, I. Hubert Joe, S. D. D. Roy, and T. H. Freeda, Spectrochim. Acta A 177, 36 (2010).

    Article  Google Scholar 

  40. R. S. Mulliken, J. Chem. Phys. 23, 1833 (1955).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Guerfel.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mtat, D., Touati, R., Guerfel, T. et al. Synthesis, structure, spectroscopic investigations, and computational studies of optically pure β-ketoamide. Crystallogr. Rep. 61, 1064–1071 (2016). https://doi.org/10.1134/S1063774516070075

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774516070075

Navigation