Skip to main content
Log in

New horizon in quasicrystals

  • Physical Properties of Crystals
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Quasicrystals (QCs) are aperiodic intermetallic alloys that possess a long range positional order. They often exhibit crystallographically forbidden symmetries, most commonly fivefold and tenfold. The forbidden symmetry is related to the fact that the atoms are arranged quasiperiodically. Quasiperiodic translational order has physical consequences. For example, since electrons and phonons in quasicrystals do not encounter a periodic potential, quasicrystals have unusual resistive and elastic properties, and these have been exploited in several applications. The purpose of this introduction is to present certain properties that are relevant to the surface science of quasicrystals, as a launching point for the other articles in this special issue of progress in surface science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Shechtman, I. Blech, D. Gratias and J. W. Cahn, Phys. Rev. Lett. 53, 1951 (1984).

    Article  ADS  Google Scholar 

  2. A. I. Goldman and M. Widom Annu, Rev. Phys. Chem. 42, 685 (1991).

    Article  ADS  Google Scholar 

  3. A. I. Goldman and K. F. Kelton, Rev. Mod. Phys. 65, 213 (1993).

    Article  ADS  Google Scholar 

  4. U. Koester, W. Liu, H. Liebert and M. Michel. J. Non-Cryst. Solids. 153–154, 446 (1993).

    Article  Google Scholar 

  5. J. M. Dubois, S. S. Kang and J. Von Stebut, J. Mater. Sci. Lett. 10, 537 (1991).

    Article  Google Scholar 

  6. J. M. Dubois, New Horizons in Quasicrystals: Research and Applications, Ed. by A. I. Goldman, D. Sordelet, P. A. Thiel, and J. M. Dubois (World Scientific, Singapore, 1997), p. 208.

  7. I. M. Hutchings, Tribology: Friction and Wear of Engineering Materials, Technology & Engineering (CRC Press, Boca Raton, FL, 1992), p. 273.

    Google Scholar 

  8. S. S. Kang, J. M. Dubois, et al., J. Mater. Res. 8, 2471 (1993).

    Article  ADS  Google Scholar 

  9. S. Takeuchi, H. Akiyama, N. Naito, T. Shibuya, T. Hashimoto, K. Edagawa, and K. Kimura, J. Non- Cryst. Solids 353 153 (1993).

    Google Scholar 

  10. A. Perrot and J. M. Dubois, Ann. Chim. Fr. 18, 501 (1993).

    Google Scholar 

  11. J. M. Dubois, S. S. Kang, and Y. Massiami, J. Non-Cryst. Solids 443, 153 (1993).

    Google Scholar 

  12. T. Eisenhammer, New Horizons in Quasicrystals: Research and Application, Ed. by A. I. Goldman, D. Sordelet, P. A. Thiel, and J. M. Dubois (World Scientific, Singapore, 1997), p. 304.

  13. P. Liu, A. H. Stigenberg, and J. O. Nilsson, Scr. Met. Mater. 31, 249 (1994).

    Article  Google Scholar 

  14. P. Liu, A. H. Stigenberg, and J. O. Nilsson, Acta Met. Mater. 43, 2881 (1995).

    Article  Google Scholar 

  15. P. Liu, J. O. Nilsson, New Horizons in Quasicrystals: Research and Applications, Ed. by A. I. Goldman, D. Sordelet, P. A. Thiel, and J. M. Dubois (World Scientific, Singapore, 1997), p. 264.

  16. K. F. Kelton, Int. Mater. Rev. 38, 105 (1993).

    Article  Google Scholar 

  17. K. F. Kelton, A. M. Viano, R. M. Stroud, E. H. Majzoub, P. C. Gibbons, S. T. Misture, A. I. Goldman, and M. J. Kramer, New Horizons in Quasicrystals: Research and Applications, Ed. by A. I. Goldman, D. Sordelet, P. A. Thiel, and J. M. Dubois (World Scientific, Singapore, 1997), p. 272.

  18. E. Belin and D. Mayou, Phys. Scr. 49, 356 (1993).

    Article  Google Scholar 

  19. E. Belin-Ferre, V. Fournee, and J. M. Dubois, New Horizons in Quasicrystals: Research and Applications, Ed. by A. I. Goldman, D. Sordelet, P. A. Thiel, and J. M. Dubois (World Scientific, Singapore, 1997), p. 9

  20. C. J. McHargue, Micro/Nanotribology and Its Applications, Ed. by B. Bhushan (Kluwer, Dordrecht, 1997), p. 467.

  21. F. P. Bowden and D. Tabor, The Friction and Lubrication of Solids (Clarendon Press, Oxford, 1986), p. 374.

    Google Scholar 

  22. A. P. Tsai, H. Suenaga, M. Ohmori, Y. Yokoyama, A. Inque, and T. Masumoto, Jpn. J. Appl. Phys. 31, 2530 (1992).

    Article  ADS  Google Scholar 

  23. Y. Jamal and M. L. Wyszynski, Int. J. Hydrogen. Energy. 19, 557 (1994).

    Article  Google Scholar 

  24. J. M. Dubois, Ph. Plaindoux, E. Belin-Ferre, N. Tamura and D. J. Sordelet, Quasicrystals, Ed. by S. Takeuchi and T. Fujiware (World Scientific, Singapore, 1998), p. 733.

  25. P. A. Kaiugin and A. Katz, Europhys. Lett. 21, 921 (1993).

    Article  ADS  Google Scholar 

  26. F. Samavat, M. J. Gladys, C. J. Jenks, T. A. Lograsso, B. V. King, and D. J. O’Connor, Surf. Sci. 601, 5678 (2007).

    Article  ADS  Google Scholar 

  27. S. S. Kang, J. M. Dubois, and J. Von Stebut, J. Mater. Res. 82471 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Samavat.

Additional information

The article is published in the original

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samavat, F., Kiani, M. New horizon in quasicrystals. Crystallogr. Rep. 60, 935–938 (2015). https://doi.org/10.1134/S1063774515060280

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774515060280

Keywords

Navigation