Skip to main content
Log in

Spectrophotometric Monitoring of the Activity of the Symbiotic Star CH Cyg from 2008 to 2018

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

Based on spectrophotometric observations, we have studied the variable activity of the symbiotic star CH Cyg from 2008 to 2018. The activity of the star was accompanied by a periodic increase of the flux in continuum and spectral lines. In the period of its activity, in both 2015 and 2018, absorption components appeared in the profiles of emission lines. The shape and radial velocity of the absorption components changed within a day. The maximum radial velocity of the absorption components was about \(-2000\) km s\({}^{-1}\). By modeling the observed spectral energy distribution, we have established that in the active state the luminosity and radius of the warm pseudo-photosphere of the symbiotic star increased by dozens of times, reaching \(L_{\textrm{WD}}=88.14L_{\odot}\) and \(R_{\textrm{WD}}=6.77R_{\odot}\), respectively, at maximum in 2018, and the source of activity of the symbiotic star is accretion onto a white dwarf from a red giant of spectral type M8III. The accretion rate at the maximum luminosity of the pseudo-photosphere has been estimated to be \(\dot{M}_{\textrm{acc}}\sim 4.7\times 10^{-8}M_{\odot}\) yr\({}^{-1}\). We have found a correlation between the TiO 6144 and 7125 molecular bands and the \(R\) brightness of the star, which suggests that a period of 750 days may be the pulsation period of the cool component, and, hence, we have concluded that the pulsations of the cool component at periastron or at a phase close to the periastron can provide an additional inflow of matter accreting onto the white dwarf. Thus, we have concluded that a variable mass accretion rate onto the white dwarf is responsible for the photometric variability of the symbiotic star. We show that 2015 and 2018 were the most active years for this star.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

REFERENCES

  1. M. Burmeister and L. Leedjarv, Astron. Astrophys. 504, 171 (2009).

    Article  ADS  Google Scholar 

  2. V. I. Burnashev, Byull. Abastum. Astrofiz. Observ. 59, 83 (1985).

    ADS  Google Scholar 

  3. M. A. Fluks, B. Plez, P. S. The, D. de Winter, B. E. Westerlund, and H. C. Steenman, Astron. Astrophys. Suppl. Ser. 105, 311 (1994).

    ADS  Google Scholar 

  4. K. Hinkle, H. Kenneth, and F. Fekel, Astron. J. 105, 107 (1993).

    Article  Google Scholar 

  5. K. Hinkle, F. Fekel, and R. Joyce, Astrophys. J. 692, 1360 (2009).

    Article  ADS  Google Scholar 

  6. T. Iijima, Mon. Not. R. Astron. Soc. 297, 77 (1998).

    Article  ADS  Google Scholar 

  7. T. Iijima, Astron. Astrophys. 622, 45(2019).

    Article  Google Scholar 

  8. S. J. Kenyon and T. Fernandez-Castro, Astron. J. 93, 938 (1987).

    Article  ADS  Google Scholar 

  9. L. N. Kondrat’eva, F. K. Rspaev, M. A. Krugov, and A. V. Serebryanskii, Astrofizika 60, 169 (2017).

    Google Scholar 

  10. K. Mukai, J. A. Kennea, G. J. M. Luna, and J. L. Sokoloski, Astron. Telegram, No. 2245 (2009).

  11. M. Sekeras, A. Skopal, S. Shugarov, N. Shagatova, E. Kundra, R. Komzik, M. Vrastak, S. P. Peneva, E. Semkov, and R. Stubbings, Contrib. Astron. Obs. Skalnate Pleso 49, 19 (2019).

    ADS  Google Scholar 

  12. S. Shugarov, A. Skopal, and M. Sekeras, EAS 71, 107 (2015).

    Google Scholar 

  13. A. Skopal, Inf. Bull. Var. Stars 415 (1995).

  14. A. Skopal, M. F. Bode, and M. Bryce, Mon. Not. R. Astron. Soc. 282, 327 (1996).

    Article  ADS  Google Scholar 

  15. A. Skopal, M. F. Bode, M. M. Crocker, H. Drechsel, S. P. S. Eyres, and R. Komzik, Mon. Not. R. Astron. Soc. 335, 1109 (2002).

    Article  ADS  Google Scholar 

  16. A. Skopal, Astron. Astrophys. 440, 995 (2005).

    Article  ADS  Google Scholar 

  17. A. Skopal, M. Vanko, T. Pribulla, D. Chochol, E. Semkov, M. Wolf, and A. Jones, Astron. Nachr. 328, 909 (2007).

    Article  ADS  Google Scholar 

  18. A. Skopal, S. Shugarov, and D. Chochol, Astron. Telegram, No. 2394 (2010).

  19. A. Skopal, S. Shugarov, and M. Vanko, Astron. Nachr. 333, 242 (2012).

    Article  ADS  Google Scholar 

  20. A. R. Taylor, E. R. Seaquist, and J. A. Mattei, Nature (London, U.K.) 319, 38 (1986).

    Article  ADS  Google Scholar 

  21. M. Yamashita and H. Maehara, Publ. Astron. Soc. Jpn. 31, 307 (1979).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to all of the variable star observers who contributed to the creation of the worldwide AAVSO database for the use of their observations in our paper.

Funding

This study was supported by VEGA grant no. 2/0030/21 of the Slovak Academy of Sciences and a grant from the Slovak Research Agency for Development via contract no. APVV-15-0458.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. N. Tarasova.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasova, T.N., Skopal, A. Spectrophotometric Monitoring of the Activity of the Symbiotic Star CH Cyg from 2008 to 2018. Astron. Lett. 47, 235–251 (2021). https://doi.org/10.1134/S1063773721040071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773721040071

Keywords:

Navigation