Skip to main content
Log in

Transient Double-Beam Spectrograph for the 2.5-m Telescope of the Caucasus Mountain Observatory of SAI MSU

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

The Transient Double-beam Spectrograph (TDS) is designed for low-spectral-resolution optical observations of nonstationary and extragalactic sources at the 2.5-m telescope of the Caucasus Mountain Observatory (CMO) of SAI MSU. The spectra are recorded simultaneously in two channels, short-wavelength (360–577 nm, reciprocal dispersion 1.21 Å/pixel, resolution \(R=1300\) with a \(1^{\prime\prime}\)-wide working slit) and long-wavelength (567–746 nm, 0.87 Å/pixel, \(R=2500\)) ones, with the light between them being split by a dichroic mirror with a 50\(\%\) transmittance at 574 nm. In the ‘‘blue’’ channel, it is possible to automatically replace the main grating by an additional one with a double resolving power. Two CCD cameras based on E2V 42-10 detectors cooled down to \({-}70^{\circ}\)C with a readout noise of 3 electrons at a readout rate of 50 kHz serve as detectors. The height of the entrance slit is 3 arcmin. The spectrograph incorporates a back-slit viewing camera and a calibration unit to record the line spectrum of a gas-discharge lamp and a continuum LED source (‘‘flat field’’) to take into account the vignetting and slit width nonuniformity. The transmittance of the entire optical path without losses on the slit at the zenith is 20 and 35\(\%\) in the ‘‘blue’’ and ‘‘red’’ channels, respectively. Excluding the atmosphere and the telescope, the efficiency of the TDS itself reaches 47 and 65\(\%\) at maximum, respectively. The spectrograph is permanently mounted at the Cassegrain focus of the 2.5-m CMO SAI MSU telescope together with a wide-field photometric CCD-camera; the light is fed into the spectrograph by a flat diagonal mirror inserted into the optical path. Regular observations of nonstationary stars and extragalactic sources to \({\sim}20^{\textrm{m}}\) with a signal-to-noise ratio above 5 in 2 h of observations have been carried out with the TDS since November 2019.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. http://www.ing.iac.es/Astronomy/instruments/ids/.

  2. https://www.sdss.org/instruments/boss_spectrograph/.

  3. https://www.asahi-spectra.com, the leading manufacturer of astronomical interference and glass filters.

  4. https://macrooptica.ru.

  5. https://wasatchphotonics.com/.

  6. Schott, Ohara and LZOS glasses glued with a low-temperature OK-72FT5 glue transparent down to 350 nm are used in the TDS optics.

  7. https://andor.oxinst.com/products/newton-ccd-and-emccd-cameras/newton-940.

  8. Model BFLY-PGE-23S6M-C. https://www.flir.eu .

  9. \(38\times 54\) mm Elliptical Mirror Protected Aluminum EO #30-258. https://www.edmundoptics.com.

  10. Model STW9C2PB-S Q54CY3, see http://www.seoulsemicon.com.

  11. https://epics.anl.gov/.

  12. https://www.eso.org/sci/observing/tools/standards/spectra/stanlis.html.

  13. https://noirlab.edu/public/images/noao-sun/.

  14. https://bitbucket.org/chil_sai/mosifu-pipeline.

  15. The reflectivity of the mirrors of the 2.5-m telescope in a relative scale is monitored at CMO.

  16. https://www.aavso.org/aavso-alert-notice-719.

  17. http://www.sai.msu.ru/new_vars/.

REFERENCES

  1. V. L. Afanasiev and A. V. Moiseev, Astron. Lett. 31, 194 (2005).

    Article  ADS  Google Scholar 

  2. V. P. Arkhipova, N. P. Ikonnikova, M. A. Burlak, and A. V. Dodin, Astron. Lett. 46 (9) (2020, in press).

  3. E. A. Balakina, M. V. Pruzhinskaya, A. E. S. Moskvitin, et al., arXiv: 2008.07934 (2020).

  4. S. C. Barden, J. A. Arns, W. S. Colburn, and J. B. Williams, Publ. Astron. Soc. Pacif. 112, 809 (2000).

    Article  ADS  Google Scholar 

  5. T. M. Brown, N. Baliber, F. B. Bianco, M. Bowman, B. Burleson, P. Conway, M. Crellin, E. Depagne, et al., Publ. Astron. Soc. Pacif. 125, 1031 (2013).

    Article  ADS  Google Scholar 

  6. B. Buzzoni, B. Delabre, H. Dekker, S. D’Odorico, D. Enard, P. Focardi, B. Gustafsson, W. Nees, et al., The Messenger 38, 9 (1984).

    ADS  Google Scholar 

  7. A. Cherepashchuk, K. Postnov, S. Malkov, E. Antokhina, and A. Belinski, New Astron. Rev. 89, 101542 (2020).

    Article  Google Scholar 

  8. A. M. Cherepashchuk, V. F. Esipov, A. V. Dodin, V. V. Davydov, and A. A. Belinskii, Astron. Rep. 62, 747 (2018).

    Article  ADS  Google Scholar 

  9. I. Chilingarian and I. Zolotukhin, Science (Washington, DC, U. S.) 348 (6233), 418 (2015).

    Article  ADS  Google Scholar 

  10. I. Chilingarian, V. Cayatte, Y. Revaz, S. Dodonov, D. Durand, F. Durret, A. Micol, and E. Slezak, Science (Washington, DC, U. S.) 326 (5958), 1379 (2009).

    Article  ADS  Google Scholar 

  11. I. Chilingarian, Y. Beletsky, S. Moran, W. Brown, B. McLeod, and D. Fabricant, Publ. Astron. Soc. Pacif. 127, 406 (2015).

    Article  ADS  Google Scholar 

  12. I. V. Chilingarian and K. A. Grishin, Publ. Astron. Soc. Pacif. 132, 064503 (2020).

    Article  ADS  Google Scholar 

  13. I. V. Chilingarian, I. Y. Katkov, I. Y. Zolotukhin, K. A. Grishin, Yu. Beletsky, K. Boutsia, and D. J. Osip, Astrophys. J. 863, 1 (2018).

    Article  ADS  Google Scholar 

  14. C. M. Copperwheat, I. A. Steele, R. M. Barnsley, S. D. Bates, D. Bersier, M. F. Bode, D. Carter, N. R. Clay, et al., Exp. Astron. 39, 119 (2015).

    Article  ADS  Google Scholar 

  15. C. M. Copperwheat, I. A. Steele, A. S. Piascik, et al., Mon. Not. R. Astron. Soc. 462, 3528 (2016).

    Article  ADS  Google Scholar 

  16. A. V. Dodin, S. A. Potanin, N. I. Shatsky, et al., Astron. Lett. 46, 429 (2020).

    Article  ADS  Google Scholar 

  17. P. G. van Dokkum, Publ. Astron. Soc. Pacif. 113, 1420 (2001).

    Article  ADS  Google Scholar 

  18. D. Fabricant, R. Fata, H. Epps, Th. Gauron, M. Mueller, J. Zajac, S. Amato, J. Barberis, et al., Publ. Astron. Soc. Pacif. 131, 075004 (2019).

    Article  ADS  Google Scholar 

  19. K. Horne, Publ. Astron. Soc. Pacif. 98, 609 (1986).

    Article  ADS  Google Scholar 

  20. D. Ilić, V. Oknyansky, L. Č. Popović, S. S. Tsygankov, A. A. Belinski, A. M. Tatarnikov, A. V. Dodin, N. I. Shatsky, et al., Astron. Astrophys. 638, A13 (2020).

    Article  Google Scholar 

  21. J. Kansky, I. Chilingarian, D. Fabricant, A. Matthews, S. Moran, M. Paegert, J. Duane Gibson, D. Porter, et al., Publ. Astron. Soc. Pacif. 131, 075005 (2019).

    Article  ADS  Google Scholar 

  22. I. Y. Katkov and I. V. Chilingarian, in Astronomical Data Analysis Software and Systems XX, Ed. by I. N. Evans, A. Accomazzi, D. J. Mink, and A. H. Rots, ASP Conf. Ser. 442, 143 (2011).

    Google Scholar 

  23. V. Kornilov, B. Safonov, M. Kornilov, et al., Publ. Astron. Soc. Pacif. 126, 482 (2014).

    Article  ADS  Google Scholar 

  24. V. Kornilov, M. Kornilov, O. Voziakova, et al., Mon. Not. R. Astron. Soc. 462, 4464 (2016).

    Article  ADS  Google Scholar 

  25. V. Lipunov, E. Gorbovskoy, V. Afanasiev, et al., Astron. Astrophys. 588, A90 (2016).

    Article  Google Scholar 

  26. D. J. MacConnell, Astron. Astrophys. Suppl. Ser. 48, 355 (1982).

    ADS  Google Scholar 

  27. J. Mink, J. Rhee, S. Moran, and W. Brown, ASP Conf. Ser. 522, 655 (2020).

  28. L. Morales-Rueda, D. Carter, I. A. Steele, P. A. Charles, and S. Worswick, Astron. Nachr. 325, 215 (2004).

    Article  ADS  Google Scholar 

  29. F. Onori, G. Cannizzaro, P. G. Jonker, M. Fraser, Z. Kostrzewa-Rutkowska, A. Martin-Carrillo, S. Benetti, N. Elias-Rosa, et al., Mon. Not. R. Astron. Soc. 489, 1463 (2019).

    Article  ADS  Google Scholar 

  30. M. Popescu, O. Vaduvescu, J. de León, R. M. Gherase, J. Licandro, I. L. Boacă, A. B. Şonka, R. P. Ashley, et al., Astron. Astrophys. 627, A124 (2019).

    Article  Google Scholar 

  31. S. A. Potanin, I. A. Gorbunov, A. V. Dodin, A. D. Savvin, B. S. Safonov, and N. I. Shatsky, Astron. Rep. 61, 715 (2017).

    Article  ADS  Google Scholar 

  32. M. S. Pshirkov, A. V. Dodin, A. A. Belinski, S. G. Zheltoukhov, A. A. Fedoteva, O. V. Voziakova, S. A. Potanin, S. I. Blinnikov, and K. A. Postnov, Mon. Not. R. Astron. Soc. 499, L21 (2020).

    Article  ADS  Google Scholar 

  33. A. S. Saburova, I. V. Chilingarian, I. Y. Katkov, O. V. Egorov, A. V. Kasparova, S. A. Khoperskov, R. I. Uklein, and O. V. Vozyakova, Mon. Not. R. Astron. Soc. 481(3), 3534 (2018).

    Article  ADS  Google Scholar 

  34. N. Shatsky, A. Belinski, A. Dodin, S. Zheltoukhov, V. Kornilov, K. Postnov, S. Potanin, B. Safonov, A. Tatarnikov, and A. Cherepashchuk, arXiv: 2010.10850 (2020).

  35. S. A. Smee, J. E. Gunn, A. Uomoto, N. Roe, D. Schlegel, C. M. Rockosi, M. A. Carr, F. Leger, et al., Astron. J. 146 (2), 32 (2013).

    Article  ADS  Google Scholar 

  36. K. V. Sokolovsky, E. Aydi, L. Izzo, et al., Astron. Telegram 14004, 1 (2020).

    ADS  Google Scholar 

  37. K. Taylor, G. Robertson, and S. Barden, in Imaging the Universe in Three Dimensions, Ed. by W. van Breugel and J. Bland-Hawthorn, ASP Conf. Ser. 195, 110 (2000).

    Google Scholar 

  38. A. Volnova, M. Pruzhinskaya, A. Pozanenko, S. I. Blinnikov, P. Yu. Minaev, O. A. Burkhonov, A. M. Chernenko, Sh. A. Ehgamberdiev, et al., Mon. Not. R. Astron. Soc. 467, 3500 (2017).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The spectrograph was manufactured with the support by RSF grants 16-12-1059 (the design and production of the red-channel optics) and 17-12-01241 (the blue-channel optics and camera). The work of S.A. Potanin, N.I. Shatsky, A.A. Belinski, S.G. Zheltoukhov, A.M. Tatarnikov, A.V. Dodin, K.A. Postnov, and I.V. Chilingarian was supported in part by the Leading Scientific School of MSU ‘‘Physics of Stars, Relativistic Objects, and Galaxies.’’ S.G. Zheltoukhov, A.V. Dodin, and K.A. Postnov were also supported by the Ministry of Science and Higher education of the Russian Federation within the financing program of large scientific projects of the ‘‘Science’’ National Project (grant no. 075-15-2020-778). The studies with the TDS and the 2.5-m telescope of CMO SAI MSU are supported by the Program of Development of the Moscow State University. We are grateful to V.L. Afanasiev and A.V. Moiseev from SAO RAS for the consultations and advice in constructing the instrument and to A.A. Tokovinin for his valuable remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Potanin.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potanin, S.A., Belinski, A.A., Dodin, A.V. et al. Transient Double-Beam Spectrograph for the 2.5-m Telescope of the Caucasus Mountain Observatory of SAI MSU. Astron. Lett. 46, 836–854 (2020). https://doi.org/10.1134/S1063773720120038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773720120038

Keywords:

Navigation