Skip to main content
Log in

Performance analysis of differential speckle polarimetry

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We consider a method for obtaining information on polarization of astronomical objects radiation at diffraction limited resolution—differential speckle polarimetry. As an observable we propose to use averaged cross spectrum of two short-exposure images corresponding to orthogonal polarizations, normalized by averaged power spectrum of one of images. Information on polarization can be extracted if object under study can be described by model with several parameters. We consider two examples: pointlike source whose photocenter position depends on orientation of passing polarization and exozodiacal dust disc around a star. In first case the difference between photocenter positions can be measured with precision of 8 µas for 2.5-m telescope and 1.2 µas for 6-m telescope for object V = 13m. For second example method allows detection of discs around central star of V = 1m with fractional luminosities of 1.8 × 10−5 and 5.6 × 10−6 for 2.5- and 6-m telescope, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. O. Absil and D. Mawet, Astron. Astrophys. Rev. 18, 317 (2010).

    Article  ADS  Google Scholar 

  2. O. Absil, E. di Folco, A. Merand, et al., Astron. Astrophys. 452, 237 (2006).

    Article  ADS  Google Scholar 

  3. S. J. Almeida and M. V. Pillet, Astron. Astrophys. 260, 543 (1992).

    ADS  Google Scholar 

  4. R. M. A. Azzam and N. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1987).

    Google Scholar 

  5. M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford), 1964; Nauka, Moscow, 1973).

    Google Scholar 

  6. P. B. Cameron, M. C. Britton, and S. R. Kulkarni, Astron. J. 137, 83 (2009).

    Article  ADS  Google Scholar 

  7. H. Canovas, M. Rodenhuis, S. V. Jeffers, et al., Astron. Astrophys. 531, A102 (2011).

    Article  ADS  Google Scholar 

  8. K. Dohlen, M. Langlois, M. Saisse, et al., Proc.SPIE 7014 (2008).

  9. H. Falcke, K. Davidson, K.-H. Hofmann, et al., Astron. Astrophys. 306, L17 (1996).

    ADS  Google Scholar 

  10. E. di Folco, O. Absil, J.-C. Augereau, et al., Astron. Astrophys. 475, 243 (2007).

    Article  ADS  Google Scholar 

  11. J. W. Goodman, Statistical Optics (Wiley Interscience, New York, 2000; Mir, Moscow, 1988).

    Google Scholar 

  12. C. M. Harding, R. A. Johnston, and R. G. Lane, Appl. Opt. 38, 2161 (1999).

    Article  ADS  Google Scholar 

  13. J. Hashimoto, M. Tamura, T. Muto, et al., Astrophys. J. 729, L17 (2011).

    Article  ADS  Google Scholar 

  14. S. S. Hong, Astron. Astrophys. 146, 67 (1985).

    ADS  Google Scholar 

  15. J. Hynecek and T. Nishiwaki, IEEE T. Electron Dev. 50, 239 (2003).

    Article  ADS  Google Scholar 

  16. T. Kelsall, J. L. Weiland, B.A. Franz, et al., Astrophys. J. 508, 44 (1998).

    Article  ADS  Google Scholar 

  17. D. Korff, J. Opt. Soc. Am. 63, 971 (1973).

    Article  ADS  Google Scholar 

  18. V. Kornilov, N. Shatsky, O. Voziakova, et al., Mon. Not. R. Astron. Soc. 408, 1233 (2010).

    Article  ADS  Google Scholar 

  19. J. E. Krist, K. R. Stapelfeldt, D. A. Golimowski, et al., Astron. J. 130, 2778 (2005).

    Article  ADS  Google Scholar 

  20. S. G. Kuzmenkov, Sov. Astron. 29, 699 (1985).

    ADS  Google Scholar 

  21. P. F. Lazorenko, Astron. Astrophys. 449, 1271 (2006).

    Article  ADS  Google Scholar 

  22. A. W. Lohmann, G. Weigelt, and B. Wirnitzer, Appl. Opt. 22, 4028 (1983).

    Article  ADS  Google Scholar 

  23. B. Macintosh, J. Graham, D. Palmer, et al., Proc. SPIE 6272 (2006).

  24. I. Marti-Vidal, M. A. Perez-Torres, and A. P. Lobanov, Astron. Astrophys. 541, A135 (2012).

    Article  ADS  Google Scholar 

  25. B. L. McGlamery, Proc. SPIE 74, 225 (1976).

    Article  ADS  Google Scholar 

  26. S. M. Moran, M. J. Kuchner, and M. J. Holman, Astrophys. J. 612, 1163 (2004).

    Article  ADS  Google Scholar 

  27. B. R. M. Norris, P. G. Tuthill, M. J. Ireland, et al., Nature 484, 220 (2012).

    Article  ADS  Google Scholar 

  28. C. Packham, T. J. Jones, M. Krejny, et al., Proc. SPIE 7735 (2010).

  29. R. Petrov, F. Roddier, and C. Aime, J. Opt. Soc. Am. A 3, 634 (1986).

    Article  ADS  Google Scholar 

  30. S. H. Pravdo and S. B. Shaklan, Astrophys. J. 465, 264 (1996).

    Article  ADS  Google Scholar 

  31. A. Roberge, C. H. Chen, R. Millan-Gabet, et al., arXiv:1204.0025 (2012).

  32. D. Schertl, Y. Balega, T. Hannemann, et al., Astron. Astrophys. 361, L29 (2000).

    ADS  Google Scholar 

  33. C. Thalmann, H. M. Schmid, A. Boccaletti, et al., Proc. SPIE 7014 (2008).

  34. J. Tinbergen, Astronomical Polarimetry (Cambridge Univ. Press, Cambrigde, 2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Safonov.

Additional information

Original Russian Text © B.S. Safonov, 2013, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2013, Vol. 39, No. 4, pp. 265–279.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Safonov, B.S. Performance analysis of differential speckle polarimetry. Astron. Lett. 39, 237–250 (2013). https://doi.org/10.1134/S106377371304004X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377371304004X

Keywords

Navigation