Skip to main content
Log in

Interference structure of low-frequency reverberation signals in shallow water

  • Ocean Acoustics. Hydroacoustics
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

Using numerical simulation, an analysis was conducted of the interference structure of a bottomscattered sound field generated by a wideband point source in shallow water under winter and summer conditions. The scattered signals were received from the place where the source was located and were subjected to Fourier transform with a sliding window. The paper demonstrates the possibility of estimating the waveguide invariant for backscattered signals when processing the sound intensity distributions in wide frequency and distance ranges up to the scattering area. A technique is proposed for reconstructing the twodimensional field of internal waves using variations of the interference pattern of reverberation signals. The influence of wind surface waves on the degree of interference band contrast is illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. H. Munk, P. Worcester, and C. Wunsch, Ocean Acoustic Tomography (University Press, Cambridge, 1995).

    Book  Google Scholar 

  2. V. A. Burov, A. V. Grinyuk, V. N. Kravchenko, P. Yu. Mukhanov, S. N. Sergeev, and A. S. Shurup, Acoust. Phys. 60, 647 (2014).

    Article  ADS  Google Scholar 

  3. B. G. Katsnelson, V. G. Petnikov, and J. F. Lynch, Fundamentals of Shallow Water Acoustics (Springer—Verlag, 2011).

    Google Scholar 

  4. A. V. Bunchuk and Yu. Yu. Zhitkovskii, Sov. Phys.— Acoust. (USA) 26, 363 (1980).

    Google Scholar 

  5. N. C. Makris, L. Z. Avelino, and R. Menis, J. Acoust. Soc. Am. 97, 3547 (1995).

    Article  ADS  Google Scholar 

  6. N. C. Makris, S. Jagannothan, and A. Ignisca, Oceanography 23, 204 (2010).

    Article  Google Scholar 

  7. Ch. Holland, J. Acoust. Soc. Am. 119, 1373 (2006).

    Article  ADS  Google Scholar 

  8. D. E. Weston and P. D. Hocking, J. Acoust. Soc. Am. 87, 639 (1990).

    Article  ADS  Google Scholar 

  9. K. LePage, J. Acoust. Soc. Am. 106, 3240 (1999).

    Article  ADS  Google Scholar 

  10. V. A. Grigor’ev, V. M. Kuz’kin, and V. G. Petnikov, Acoust. Phys. 50, 37 (2004).

    Article  ADS  Google Scholar 

  11. R. Goldhahn, G. Hickman, and J. Krolik, J. Acoust. Soc. Am. 124, 2841 (2008).

    Article  ADS  Google Scholar 

  12. F. H. Li, Y. J. Zhang, R. H. Zhang, and J. J. Liu, Science Chin. Phys. Mechan. Astron. 53, 1408 (2010).

    Article  ADS  Google Scholar 

  13. S. D. Chuprov, in Acoustics of Ocean Ed. by L. M. Brekhovskikh and I. B. Andreeva, (Nauka, Moscow, 1982) [in Russian].

  14. V. M. Kuz’kin, I.-T. Lin, A. A. Lun’kov, J. F. Linch, and V. G. Petnikov, Acoust. Phys. 57, 381 (2011).

    Article  ADS  Google Scholar 

  15. V. A. Gordienko, Vector–Phase Methods in Acoustics (Fizmatlit, Moscow, 2007) [in Russian].

    Google Scholar 

  16. W. M. Carey, J. Acoust. Soc. Am. 104, 831 (1998).

    Article  ADS  Google Scholar 

  17. T. F. Duda, J. M. Collis, Y.-T. Lin, A. E. Newhall, J. F. Lynch, and H. A. de Ferrari, J. Acoust. Soc. Am. 131, 1782 (2012).

    Article  ADS  Google Scholar 

  18. J. Max, J.-C. Carre, and F. Peltje, Methodes et techniques de traitement du signal et applications aux mesures physiques. Tome 1. Principes generaux et methodes classiques, (1981; Mir, Moscow, 1983).

    Google Scholar 

  19. W. J. Pearson, G. Neumann, and R. W. James, Practical Method for Observing and Forecasting Ocean Waves by Means of Wave Spectra and Statistics, (US Navy Hydr., 1955), vol. 284.

  20. D. Rouseff, Waves Random Media 11, 377 (2001).

    Article  MATH  ADS  Google Scholar 

  21. G. L. Spain and W. A. Kuperman, J. Acoust. Soc. Am. 106, 2454 (1999).

    Article  ADS  Google Scholar 

  22. L. A. Brooks, M. R. F. Kidner, A. C. Zander, C. H. Hansen, and Z. Y. Zhang, Techniques for extraction of the waveguide invariant from interference patterns in spectrograms, Proc. Acoustics, Christchurch, New Zealand, 2006.

    Google Scholar 

  23. V. M. Kuz’kin, M. V. Kutsov, and S. A. Pereselkov, Acoust. Phys. 59, 686 (2013).

    Article  ADS  Google Scholar 

  24. V. M. Kuz’kin, M. V. Kutsov, and S. A. Pereselkov, Acoust. Phys. 60, 405 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Lunkov.

Additional information

Original Russian Text © A.A. Lunkov, 2015, published in Akusticheskii Zhurnal, 2015, Vol. 61, No. 5, pp. 596–604.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lunkov, A.A. Interference structure of low-frequency reverberation signals in shallow water. Acoust. Phys. 61, 547–555 (2015). https://doi.org/10.1134/S1063771015040065

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771015040065

Keywords

Navigation