Skip to main content
Log in

Urokinase Receptor uPAR Overexpression in Mouse Brain Stimulates the Migration of Neurons into the Cortex during Embryogenesis

  • MOLECULAR DEVELOPMENTAL BIOLOGY
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

The regulation of neuronal migration in the cerebral cortex during embryonic development is one of the most important but underinvestigated processes that determines the correct formation of neural networks and the development of cognitive functions. Mutations of the urokinase receptor (uPAR) gene in mice lead to spontaneous seizures; polymorphisms of the PLAUR gene encoding uPAR in humans are associated with autism spectrum disorders. The effect of uPAR overexpression on the radial migration of neurons in the cerebral cortex during mouse embryogenesis has been investigated. The number of neurons migrating from the ventricular zone of proliferating progenitors to the outer layers of the cerebral cortex was evaluated. We found that uPAR overexpression significantly stimulates radial neuronal migration to the outer layers of the differentiating cortex. These data show for the first time uPAR-dependent regulation of neuronal migration in the embryonic period of the cerebral cortex development. Further study of uPAR’s role in regulating the migration trajectory of neuronal precursors will advance our understanding of the mechanisms of brain formation in health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Bae, M.H., Bissonette, G.B., Mars, W.M., Michalopoulos, G.K., Achim, C.L., Depireux, D.A., and Powell, E.M., Hepatocyte growth factor (HGF) modulates GABAergic inhibition and seizure susceptibility, Exp. Neurol., 2010, vol. 221, no. 1, pp. 129–135.

    Article  CAS  Google Scholar 

  2. Bissonette, G.B., Bae, M.H., Suresh, T., Jaffe, D.E., and Powell, E.M., Astrocyte-mediated hepatocyte growth factor/scatter factor supplementation restores GABAergic interneurons and corrects reversal learning deficits in mice, J. Neurosci., 2010, vol. 30, no. 8, pp. 2918–2923.

    Article  CAS  Google Scholar 

  3. Blasi, F. and Carmeliet, P., uPAR: a versatile signalling orchestrator, Nat. Rev. Mol. Cell Biol., 2002, vol. 3, no. 12, pp. 932–943.

    Article  CAS  Google Scholar 

  4. Bolkvadze, T., Rantala, J., Puhakka, N., Andrade, P., and Pitkänen, A., Epileptogenesis after traumatic brain injury in Plau-deficient mice, Epilepsy Behav., 2015, vol. 51, pp. 19–27.

    Article  Google Scholar 

  5. Bolkvadze, T., Puhakka, N., and Pitkanen, A., Epileptogenesis after traumatic brain injury in Plaur-deficient mice, Epilepsy Behav., 2016, vol. 60, pp. 187–196.

    Article  Google Scholar 

  6. Bruneau, N. and Szepetowski, P., The role of the urokinase receptor in epilepsy, in disorders of language, cognition, communication and behavior, and in the central nervous system, Curr. Pharm. Des., 2011, vol. 17, no. 19, pp. 1914—1923.

    Article  CAS  Google Scholar 

  7. Campbell, D.B., D’Oronzio, R., Garbett, K., Ebert, P.J., Mirnics, K., Levitt, P., and Persico, A.M., Disruption of cerebral cortex met signaling in autism spectrum disorder, Ann. Neurol., 2007, vol. 62, no. 3, pp. 243–250.

    Article  Google Scholar 

  8. Campbell, D.B., Li, C., Sutcliffe, J.S., Persico, A.M., and Levitt, P., Genetic evidence implicating multiple genes in the MET receptor tyrosine kinase pathway in autism spectrum disorder, Autism Res., 2008, vol. 1, no. 3, pp. 159–168.

    Article  Google Scholar 

  9. D’Alessio, S. and Blasi, F., The urokinase receptor as an entertainer of signal transduction, Front. Biosci., 2009, vol. 14, pp. 4575–4587.

    Article  Google Scholar 

  10. dal Maschio, M., Ghezzi, D., Bony, G., Alabastri, A., Deidda, G., Brondi, M., Sato, S.S., Zaccaria, R.P., Fabrizio, E.Di., Ratto, G.M., and Cancedda, L., High-performance and site-directed in utero electroporation by a triple-electrode probe, Nat. Commun., 2012, vol. 3, no. 1, p. 960.

    Article  Google Scholar 

  11. Dwyer, N.D., Chen, B., Chou, S.J., Hippenmeyer, S., Nguyen, L., and Ghashghaei, H.T., Neural stem cells to cerebral cortex: emerging mechanisms regulating progenitor behavior and productivity, J. Neurosci. Soc. Neurosci., 2016, vol. 36, no. 45, pp. 11394–11401.

    Article  CAS  Google Scholar 

  12. Eagleson, K.L., Bonnin, A., and Levitt, P., Region- and age-specific deficits in γ-aminobutyric acidergic neuron development in the telencephalon of the uPAR–/– mouse, J. Comp. Neurol., 2005, vol. 489, no. 4, pp. 449–466.

    Article  Google Scholar 

  13. Eagleson, K.L., Campbell, D.B., Thompson, B.L., Bergman, M.Y., and Levitt, P., The autism risk genes MET and PLAUR differentially impact cortical development, Autism Res., 2011, vol. 4, no. 1, pp. 68–83.

    Article  Google Scholar 

  14. Eden, G., Archinti, M., Furlan, F., Murphy, R., and Degryse, B., The urokinase receptor interactome, Curr. Pharm. Des., 2011, vol. 17, no. 19, pp. 1874–1889.

    Article  CAS  Google Scholar 

  15. Eisener-Dorman, A.F., Lawrence, D.A., and Bolivar, V.J., Cautionary insights on knockout mouse studies: the gene or not the gene?, Brain. Behav. Immun., 2009, vol. 23, no. 3, pp. 318–324.

    Article  CAS  Google Scholar 

  16. Huang, Z., Molecular regulation of neuronal migration during neocortical development, Mol. Cell Neurosci., 2009, vol. 42, no. 1.https://doi.org/10.1016/j.mcn.2009.06.003

  17. Klimovich, P.S. and Semina, E.V., Mechanisms of participation of the urokinase receptor in directed axonal growth, Mol. Biol., 2020, vol. 54, no. 1, pp. 89–98.

    Article  CAS  Google Scholar 

  18. Klimovich, P.S., Semina, E.V., Karagyaur, M.N., Rysenkova, K.D., Sysoeva, V.Y., Mironov, N.A., Sagaradze, G.D., Az’muko, A.A., Popov, V.S., Rubina, K.A., and Tkachuk, V.A., Urokinase receptor regulates nerve regeneration through its interaction with α5β1-integrin, Biomed. Pharmacother., 2020, vol. 125, p. 110008.

    Article  CAS  Google Scholar 

  19. Lahtinen, L., Huusko, N., Myöhänen, H., Lehtivarjo, A.-K., Pellinen, R., Turunen, M.P., Ylä-Herttuala, S., Pirinen, E., and Pitkanen, A., Expression of urokinase-type plasminogen activator receptor is increased during epileptogenesis in the rat hippocampus, Neuroscience, 2009, vol. 163, no. 1, pp. 316–328.

    Article  CAS  Google Scholar 

  20. Lahtinen, L., Ndode-Ekane, X.E., Barinka, F., Akamine, Y., Esmaeili, M.H., Rantala, J., and Pitkänen, A., Urokinase-type plasminogen activator regulates neurodegeneration and neurogenesis but not vascular changes in the mouse hippocampus after status epilepticus, Neurobiol. Dis., 2010, vol. 37, no. 3, pp. 692–703.

    Article  CAS  Google Scholar 

  21. Levitt, P., Disruption of interneuron development, Epilepsia, 2005, vol. 46, no. s7, pp. 22–28.

    Article  CAS  Google Scholar 

  22. Lino, N., Fiore, L., Rapacioli, M., Teruel, L., Flores, V., Scicolone, G., and Sánchez, V., uPA-uPAR molecular complex is involved in cell signaling during neuronal migration and neuritogenesis, Dev. Dyn., 2014, vol. 243, no. 5, pp. 676–689.

    Article  CAS  Google Scholar 

  23. Matsuda, T. and Cepko, C.L., Electroporation and RNA interference in the rodent retina in vivo and in vitro, Proc. Natl. Acad. Sci. U. S. A., 2004, vol. 101, no. 1, pp. 16–22.

    Article  CAS  Google Scholar 

  24. Merino, P., Diaz, A., Jeanneret, V., Wu, F., Torre, E., Cheng, L., and Yepes, M., Urokinase-type plasminogen activator (uPA) binding to the uPA receptor (uPAR) promotes axonal regeneration in the central nervous system, J. Biol. Chem., 2017, vol. 292, no. 7, pp. 2741–2753.

    Article  CAS  Google Scholar 

  25. Miyazaki, Y., Song, J.W., and Takahashi, E., Asymmetry of radial and symmetry of tangential neuronal migration pathways in developing human fetal brains, Front. Neuroanat., 2016, vol. 10, p. 2.

    Article  Google Scholar 

  26. Ndode-Ekane, X.E. and Pitkänen, A., Urokinase-type plasminogen activator receptor modulates epileptogenesis in mouse model of temporal lobe epilepsy, Mol. Neurobiol., 2013, vol. 47, no. 3, pp. 914–937.

    Article  CAS  Google Scholar 

  27. Owen, K.A., Qiu, D., Alves, J., Schumacher, A.M., Kilpatrick, L.M., Li, J., Harris, J.L., and Ellis, V., Pericellular activation of hepatocyte growth factor by the transmembrane serine proteases matriptase and hepsin, but not by the membrane-associated protease uPA, Biochem. J., 2010, vol. 426, no. 2, pp. 219–228.

    Article  CAS  Google Scholar 

  28. Pitkänen, A., Ndode-Ekane, X.E., Lukasiuk, K., Wilczynski, G.M., Dityatev, A., Walker, M.C., Chabrol., E., Dedeurwaerdere, S., Vazquez, N., and Powell, E.M., Neural ECM and epilepsy, Prog. Brain Res., 2014, vol. 214, pp. 229–262.

    Article  Google Scholar 

  29. Powell, E.M., Mars, W.M., and Levitt, P., Hepatocyte growth factor/scatter factor is a motogen for interneurons migrating from the ventral to dorsal telencephalon, Neuron, 2001, vol. 30, no. 1, pp. 79–89.

    Article  CAS  Google Scholar 

  30. Powell, E.M., Campbell, D.B., Stanwood, G.D., Davis, C., Noebels, J.L., and Levitt, P., Genetic disruption of cortical interneuron development causes region- and GABA cell type-specific deficits, epilepsy, and behavioral dysfunction, J. Neurosci., 2003, vol. 23, no. 2, pp. 622–631.

    Article  CAS  Google Scholar 

  31. Roll, P., Rudolf, G., Pereira, S., Royer, B., Scheffer, I.E., Massacrier, A., Valenti, M.-P., Roeckel-Trevisiol, N., Jamali, S., Beclin, C., Seegmuller, C., Metz-Lutz, M.-N., Lemainque, A., Delepine, M., Caloustian, C., Martin, A., de Saint Bruneau, N., Depétris, D., Mattei, M.-G., Flori, E., Robaglia-Schlupp, A., Lévy, N., Neubauer, B.A., Ravid, R., Marescaux, C., Berkovic, S.F., Hirsch, E., Lathrop, M., Cau, P., and Szepetowski, P., SRPX2 mutations in disorders of language cortex and cognition, Hum. Mol. Genet., 2006, vol. 15, no. 7, pp. 1195–1207.

    Article  CAS  Google Scholar 

  32. Rose, C., Schwegler, H., Hanke, J., and Yilmazer-Hanke, D.M., Pregnancy rates, prenatal and postnatal survival of offspring, and litter sizes after reciprocal embryo transfer in DBA/2JHd, C3H/HeNCrl and NMRI mice, Theriogenology, 2012, vol. 77, no. 9, pp. 1883–1893.

    Article  CAS  Google Scholar 

  33. Russo, A.J. and Pietsch, S.C., Decreased hepatocyte growth factor (HGF) and gamma aminobutyric acid (GABA) in individuals with obsessive-compulsive disorder (OCD), Biomark. Insights, 2013, vol. 8. BMI.S11931.

  34. Sauvageot, C.M. and Stiles, C.D., Molecular mechanisms controlling cortical gliogenesis, Curr. Opin. Neurobiol., 2002, vol. 12, no. 3, pp. 244–249.

    Article  CAS  Google Scholar 

  35. Semina, E.V., Rubina, K.A., Stepanova, V.V., and Tkachuk, V.A., Participation of urokinase receptor and its endogenous ligands in brain development and formation of cognitive functions, Ross. Fiziol. Zh. im. I.M. Sechenova, 2016a, vol. 102, no. 8, pp. 881–903.

    CAS  PubMed  Google Scholar 

  36. Semina, E., Rubina, K., Sysoeva, V., Rysenkova, K., Klimovich, P., Plekhanova, O., and Tkachuk, V., Urokinase and urokinase receptor participate in regulation of neuronal migration, axon growth and branching, Eur. J. Cell Biol., 2016b, vol. 95, no. 9, pp. 295–310.

    Article  CAS  Google Scholar 

  37. Shmakova, A.A., Rubina, K.A., Rysenkova, K.D., Gruzdeva, A.M., Ivashkina, O.I., Anokhin, K.V., Tkachuk, V.A., and Semina, E.V., Urokinase receptor and tissue plasminogen activator as immediate early genes in pentylenetetrazole-induced seizures in the mouse brain, Eur. J. Neurosci., 2019a. ejn.14584.

  38. Shmakova, A.A., Rubina, K.A., Anokhin, K.V., Tkachuk, V.A., and Semina, E.V., The role of plasminogen activator system in the pathogenesis of epilepsy, Biochemistry (Moscow), 2019b, vol. 84, no. 9, pp. 979–991.

    CAS  Google Scholar 

  39. Shmakova, A.A., Rubina, K.A., Tkachuk, V.A., and Semina, E.V., Urokinase receptor: from regulation of proteolysis to directed axonal growth and nerve regeneration. Mechanisms of interaction with membrane ligands and intracellular signaling, Tsitologiia, 2020, vol. 62, no. 6, pp. 1–11.

    Google Scholar 

  40. Smith, H.W. and Marshall, C.J., Regulation of cell signalling by uPAR, Nat. Rev. Mol. Cell Biol., 2010, vol. 11, no. 1, p. 23.

    Article  CAS  Google Scholar 

  41. Stiles, J. and Jernigan, T.L., The basics of brain development, Neuropsychol. Rev., 2010, vol. 20, no. 4, рр. 327–348.https://doi.org/10.1007/s11065-010-9148-4

  42. Valiente, M. and Marín, O., Neuronal migration mechanisms in development and disease, Curr. Opin. Neurobiol., 2010, vol. 20, no. 1, рр. 68–78.https://doi.org/10.1016/j.conb.2009.12.003

  43. Wang, T.-W., Zhang, H., Gyetko, M.R., and Parent, J.M., Hepatocyte growth factor acts as a mitogen and chemoattractant for postnatal subventricular zone-olfactory bulb neurogenesis, Mol. Cell. Neurosci., 2011, vol. 48, no. 1, pp. 38–50.

    Article  CAS  Google Scholar 

  44. Zandifar, A., Soleimani, S., Iraji, N., Haghdoost, F., Tajaddini, M., and Javanmard, S.H., Association between promoter region of the uPAR (rs344781) gene polymorphism in genetic susceptibility to migraine without aura in three Iranian hospitals, Clin. Neurol. Neurosurg., 2014, vol. 120, pp. 45–48.

    Article  Google Scholar 

Download references

Funding

The reported study was funded by RFBR, project number 20-015-00186.

Author information

Authors and Affiliations

Authors

Contributions

V.S. Tarabykin and E.V. Semina came up with and developed the experiment. A.V. Balatsky, M.A. Kulebyakina, T. Schaub, E.V. Semina, M.N. Karagyaur, K.Yu. Kulebyakin, and K.D. Rysenkova conducted the experiments. A.A. Shmakova compiled the algorithm and processed the data. A.A. Shmakova and E.V. Semina participated in the preparation and writing of the manuscript. A.V. Balatsky, M.A. Kulebyakina, and V.S. Tarabykin participated in editing the text. V.A. Tkachuk and E.V. Semina made significant contributions to the concept of the manuscript. All authors participated in the discussion of the results.

Corresponding author

Correspondence to E. V. Semina.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

Conflict of interest. The authors declare that they have no conflict of interests.

Statement on the welfare of animals. When performing this study, all manipulations carried out with experimental animals, methods of anesthesia, euthanasia, and animal care before and after experimental interventions were in accordance with international bioethics standards. No people were used as research subjects in this study.

ADDITIONAL MATERIALS

The program code in the R language for image analysis used in the work is available at the link https://osf.io/ahcg4/ ?view_only=b6281fbf091c48f1ae96c743f5d5d26a (https:// doi.org/10.17605/OSF.IO/AHCG4).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shmakova, A.A., Balatskiy, A.V., Kulebyakina, M.A. et al. Urokinase Receptor uPAR Overexpression in Mouse Brain Stimulates the Migration of Neurons into the Cortex during Embryogenesis. Russ J Dev Biol 52, 53–63 (2021). https://doi.org/10.1134/S1062360421010069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360421010069

Keywords:

Navigation