Skip to main content
Log in

Radiation-Induced DNA Methylation Disorders: In Vitro and In Vivo Studies

  • MOLECULAR RADIOBIOLOGY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

Phenomenological aspects and mechanisms of DNA methylation disorders (changes in the total level of DNA methylation and in genome repetitive elements, locus-specific methylation disorders, loss of imprinting) induced by radiation in experimental studies in vitro and in vivo, as well as in the human organism, are considered. The results of evaluation of association between radiosensitivity of tumor cells and their epigenetic status are demonstrated. Although it was established that the radioresistant phenotype of such cells is associated with hypermethylation of promoters of multiple genes, the mechanism of this phenomenon is very complex, and a targeted effect on methylation is required to increase the damageability of tumor cells leading to their death. The association of induced changes in DNA methylation with manifestations of nontargeted radiation effects such as genomic instability and the “bystander” effect was detected. The potential significance of the study of changes in DNA methylation in irradiated individuals in order to detect individuals with premature aging and increased risk of the development of age-associated pathology is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Vilenchik, M.M., Nestabil’nost’ DNK i otdalennye posledstviya vozdeistviya izluchenii (DNA Instability and Long-Term Effects of Radiation Exposure), Moscow: Energoatomizdat, 1987.

  2. Manolio, T.A, Collins, F.S., Cox, N.J., et al., Finding the missing heritability of complex diseases, Nature, 2009, vol. 461, no. 7265, pp. 747–753. https://doi.org/10.1038/nature08494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Visscher, P.M., Brown, M.A., McCarthy, M.I., and Yang, J., Five years of GWAS discovery, Am. J. Hum. Genet., 2012, vol. 90, no. 1, pp. 7–24. https://doi.org/10.1016/j.ajhg.2011.11.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Morgan, W.F., Non-targeted and delayed effects of exposure to ionizing radiation: II. Radiation-induced genomic instability and bystander effects in vivo, clastogenic factors and transgenerational effects, Radiat. Res., 2003, vol. 159, no. 5, pp. 581–596. https://doi.org/10.1667/0033-7587(2003)159[0581:nadeoe]2.0.co;2

    Article  CAS  PubMed  Google Scholar 

  5. Suskov, I.I., Kuzmina, N.S., Baleva, L.S., and Sipyagina, A.E., The induced genomic instability as the basis for higher morbidity of children exposed to low-intensity radiation in low doses, Radiats. Biol., Radioekol., 2006, vol. 46, no. 2, pp. 167–177.

    CAS  Google Scholar 

  6. Suskov, I.I., Kuzmina, N.S., Suskova, V.S., et al., Individual characteristics of transgenerational genomic instability in children of liquidators of the Chernobyl accident (cytogenetic and immunogenetic indicators), Radiats. Biol., Radioekol., 2008, vol. 48, no. 3, pp. 278–286.

    CAS  Google Scholar 

  7. Pelevina, I.I., Petushkova, V.V., Biryukov, V.A., et al., The role of “non-targeting effects” in the response of human cells to radiation exposure, Radiats. Biol., Radioekol., 2019, vol. 59, no. 3, pp. 261–273. https://doi.org/10.1134/S086980311903010X

    Article  Google Scholar 

  8. Tharmalingam, S., Sreetharan, S., Kulesza, A.V., et al., Low-dose ionizing radiation exposure, oxidative stress and epigenetic programming of health and disease, Radiat. Res., 2017, vol. 188, no. 4, pp. 525–538. https://doi.org/10.1667/RR14587.1

    Article  CAS  PubMed  Google Scholar 

  9. Mothersill, C., Rusin, A., Fernandez-Palomo, C., and Seymour, C., History of bystander effects research 1905–present; what is in a name? Int. J. Radiat. Biol., 2018, vol. 94, no. 8, pp. 696–707. https://doi.org/10.1080/09553002.2017.1398436

    Article  CAS  PubMed  Google Scholar 

  10. Nugis, V.Yu. and Kozlova, M.G., The relationship between the frequency of chromosome aberrations in peripheral blood lymphocytes with the risk of developing diseases, including exposure to radiation, Radiats. Biol., Radioekol., 2017, vol. 57, no. 1, pp. 18–29. https://doi.org/10.7868/S0869803116060072

    Article  Google Scholar 

  11. Horvath, S., DNA methylation age of human tissues and cell types, Genome Biol., 2013, vol. 14, no. 10, p. R115. https://doi.org/10.1186/gb-2013-14-10-r115

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hannum, G., Guinney, J., Zhao, L., et al., Genome-wide methylation profiles reveal quantitative views of human aging rates, Mol. Cell., 2013, vol. 49, no. 2, pp. 359–367. https://doi.org/10.1016/j.molcel.2012.10.016

    Article  CAS  PubMed  Google Scholar 

  13. Marioni, R.E., Shah, S., McRae, A.F., et al., The epigenetic clock is correlated with physical and cognitive fitness in the Lothian Birth Cohort 1936, Int. J. Epidemiol., 2015, vol. 44, no. 4, pp. 1388–1396. https://doi.org/10.1093/ije/dyu277

    Article  PubMed  PubMed Central  Google Scholar 

  14. Soriano-Tárraga, K., Giralt-Steinhauer, E., Mola-Caminal, M., et al, Ischemic stroke patients are biologically older than their chronological age, Aging, 2016, vol. 8, no. 11, pp. 2655–2666. https://doi.org/10.18632/aging.101028

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zampieri, M., Ciccarone, F., Calabrese, R., et al., Reconfiguration of DNA methylation in aging, Mech. Ageing Dev., 2015, vol. 151, pp. 60–70. https://doi.org/10.1016/j.mad.2015.02.002

    Article  CAS  PubMed  Google Scholar 

  16. Jones, P.A. and Takai, D., The role of DNA methylation in mammalian epigenetics, Science, 2001, vol. 293, no. 5532, pp. 1068–1070. https://doi.org/10.1126/science.1063852

    Article  CAS  PubMed  Google Scholar 

  17. Suzuki, M.M. and Bird, A., DNA methylation landscapes: provocative insights from epigenomics, Nat. Rev., 2008, vol. 9, no. 6, pp. 465–476. https://doi.org/10.1038/nrg2341

    Article  CAS  Google Scholar 

  18. Jones, P.A., Functions of DNA methylation: islands, start sites, gene bodies and beyond, Nat. Rev., 2012, vol. 13, no. 7, pp. 484–492. https://doi.org/10.1038/nrg3230

    Article  CAS  Google Scholar 

  19. Pfeifer, G.P., Mutagenesis at methylated CpG sequences, Curr. Top. Microbiol. Immunol., 2006, vol. 301, pp. 259–281. https://doi.org/10.1007/3-540-31390-7_10

    Article  CAS  PubMed  Google Scholar 

  20. Bird, A.P., DNA methylation and the frequency of CpG in animal DNA, Nucleic Acids Res., 1980, vol. 8, no. 7, pp. 1499–1504. https://doi.org/10.1093/nar/8.7.1499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Robertson, K.D. and Wolffe, A.P., DNA methylation in health and disease, Nat. Rev., 2000, vol. 1, no. 1, pp. 11–19. https://doi.org/10.1038/35049533

    Article  CAS  Google Scholar 

  22. Jaco, I., Canela, A., Vera, E., and Blasco, M.A., Centromere mitotic recombination in mammalian cells, J. Cell Biol., 2008, vol. 181, no. 6, pp. 885–892. https://doi.org/10.1083/jcb.200803042

    Article  PubMed  PubMed Central  Google Scholar 

  23. Blasco, M.A., The epigenetic regulation of mammalian telomeres, Nat. Rev., 2007, vol. 8, no. 4, pp. 299–309. https://doi.org/10.1038/nrg2047

    Article  CAS  Google Scholar 

  24. Tomso, D.J. and Bell, D.A., Sequence context at human single nucleotide polymorphisms: overrepresentation of CpG dinucleotide at polymorphic sites and suppression of variation in CpG islands, J. Mol. Biol., 2003, vol. 327, no. 2, pp. 303–308. https://doi.org/10.1016/s0022-2836(03)00120-7

    Article  CAS  PubMed  Google Scholar 

  25. Kulis, M., Queirós, A.C., Beekman, R., and Martín-Subero, J.I., Intragenic DNA methylation in transcriptional regulation, normal differentiation and cancer, Biochim. Biophys. Acta, Gene Regul. Mech., 2013, vol. 1829, no. 11, pp. 1161–1174. https://doi.org/10.1016/j.bbagrm.2013.08.001

    Article  CAS  Google Scholar 

  26. Maunakea, A.K, Nagarajan, R.P., Bilenky, M., et al., Conserved role of intragenic DNA methylation in regulating alternative promoters, Nature, 2010, vol. 466, no. 7303, pp. 253–257. https://doi.org/10.1038/nature09165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Whitfield, B.L. and Billen, D., In vivo methylation of Escherichia coli DNA following ultraviolet and X-irradiation, J. Mol. Biol., 1972, vol. 63, no. 3, pp. 363–372. https://doi.org/10.1016/0022-2836(72)90433-0

    Article  CAS  PubMed  Google Scholar 

  28. Kalinich, J.F., Catravas, G.N., and Snyder, S.L., The effect of γ radiation on DNA methylation, Radiat. Res., 1989, vol. 117, no. 2, pp. 185–197.

    Article  CAS  Google Scholar 

  29. Tawa, R., Kimura, Y., Komura, J., et al., Effects of X‑ray irradiation on genomic DNA methylation levels in mouse tissues, J. Radiat. Res., 1998, vol. 39, no. 4, pp. 271–278. https://doi.org/10.1269/jrr.39.271

    Article  CAS  PubMed  Google Scholar 

  30. Chaudhry, M.A. and Omaruddin, R.A., Differential DNA methylation alterations in radiation-sensitive and -resistant cells, DNA Cell Biol., 2012, vol. 31, no. 6, pp. 908–916. https://doi.org/10.1089/dna.2011.1509

    Article  CAS  PubMed  Google Scholar 

  31. Lin, R.K., Wu, C.Y., Chang, J.W., et al., Dysregulation of p53/Sp1 control leads to DNA methyltransferase-1 overexpression in lung cancer, Cancer Res., 2010, vol. 70, no. 14, pp. 5807–5817. https://doi.org/10.1158/0008-5472.CAN-09-4161

    Article  CAS  PubMed  Google Scholar 

  32. Peterson, E.J., Bogler, O., and Taylor, S.M., p53-Mediated repression of DNA methyltransferase 1 expression by specific DNA binding, Cancer Res., 2003, vol. 63, no. 20, pp. 6579–6582.

    CAS  PubMed  Google Scholar 

  33. Tang, X., Milyavsky, M., Shats, I., et al., Activated p53 suppresses the histone methyltransferase EZH2 gene, Oncogene, 2004, vol. 23, no. 34, pp. 5759–5769. https://doi.org/10.1038/sj.onc.1207706

    Article  CAS  PubMed  Google Scholar 

  34. Maierhofer, A., Flunkert, J., Dittrich, M., et al., Analysis of global DNA methylation changes in primary human fibroblasts in the early phase following X-ray irradiation, PLoS One, 2017, vol. 12, no. 5, p. e0177442. https://doi.org/10.1371/journal.pone.0177442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kuhmann, C., Weichenhan, D., Rehli, M., et al., DNA methylation changes in cells regrowing after fractioned ionizing radiation, Radiother. Oncol., 2011, vol. 101, no. 1, pp. 116–121. https://doi.org/10.1016/j.radonc.2011.05.048

    Article  CAS  PubMed  Google Scholar 

  36. Lahtz, C., Bates, S. E., Jiang, Y., et al., Gamma irradiation does not induce detectable changes in DNA methylation directly following exposure of human cells, PLoS One, 2012, vol. 7, no. 9, p. e44858. https://doi.org/10.1371/journal.pone.0044858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kennedy, E. M., Powell, D. R., Li, Z., et al., Galactic cosmic radiation induces persistent epigenome alterations relevant to human lung cancer, Sci. Rep., 2018, vol. 8, no. 1, p. 6709. https://doi.org/10.1038/s41598-018-24755-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Becker, B.V., Kaatsch, L., Obermair, R., et al., X-ray irradiation induces subtle changes in the genome-wide distribution of DNA hydroxymethylation with opposing trends in genic and intergenic regions, Epigenetics, 2019, vol. 14, no. 1, pp. 1–13. https://doi.org/10.1080/15592294.2019.1568807

    Article  Google Scholar 

  39. Ma, S., Liu, X., Jiao, B., et al., Low-dose radiation-induced responses: focusing on epigenetic regulation, Int. J. Radiat. Biol., 2010, vol. 86, no. 7, pp. 517–528.

    Article  CAS  Google Scholar 

  40. Kejík, Z., Jakubek, M., Kaplánek, R., et al., Epigenetic agents in combined anticancer therapy, Future Med. Chem., 2018, vol. 10, no. 9, pp. 1113–1130. https://doi.org/10.4155/fmc-2017-0203

    Article  CAS  PubMed  Google Scholar 

  41. Zielske, S.P., Epigenetic DNA methylation in radiation biology: on the field or on the sidelines? J. Cell. Biochem., 2014, vol. 116, no. 2, pp. 212–217. https://doi.org/10.1002/jcb.24959

    Article  CAS  Google Scholar 

  42. Antwih, D.A., Gabbara, K.M., Lancaster, W.D., et al., Radiation-induced epigenetic DNA methylation modification of radiation-response pathways, Epigenetics, 2013, vol. 8, no. 8, pp. 839–848. https://doi.org/10.4161/epi.25498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cacan, E., Susanna, F., Greer, S.F., and Garnett-Benson, C., Radiation-induced modulation of immunogenic genes in tumor cells is regulated by both histone deacetylases and DNA methyltransferases, Int. J. Oncol., 2015, vol. 47, no. 6, pp. 2264–2275. https://doi.org/10.3892/ijo.2015.3192

    Article  CAS  PubMed  Google Scholar 

  44. Smits, K.M., Melotte, V., Niessen, H.E.C., et al., Epigenetics in radiotherapy: Where are we heading? Radiother. Oncol., 2014, vol. 111, no. 2, pp. 168–177. https://doi.org/10.1016/j.radonc.2014.05.001

    Article  PubMed  Google Scholar 

  45. Roy, K., Wang, L., Makrigiorgos, G.M., and Price, B.D., Methylation of the ATM promoter in glioma cells alters ionizing radiation sensitivity, Biochem. Biophys. Res. Commun., 2006, vol. 344, no. 3, pp. 821–826. https://doi.org/10.1016/j.bbrc.2006.03.222

    Article  CAS  PubMed  Google Scholar 

  46. Leung, R.C., Liu, S.S., Chan, K.Y., et al., Promoter methylation of death-associated protein kinase and its role in irradiation response in cervical cancer, Oncol. Rep., 2008, vol. 19, no. 5, pp. 1339–1345. https://doi.org/10.3892/or.19.5.1339

    Article  CAS  PubMed  Google Scholar 

  47. Zhou, H., Miki, R., Eeva, M., et al., Reciprocal regulation of SOCS 1 and SOCS3 enhances resistance to ionizing radiation in glioblastoma multiforme, Clin. Cancer Res., 2007, vol. 13, no. 8, pp. 2344–2353. https://doi.org/10.1158/1078-0432.CCR-06-2303

    Article  CAS  PubMed  Google Scholar 

  48. Chen, X., Liu, L., Mims, J., et al., Analysis of DNA methylation and gene expression in radiation- resistant head and neck tumors, Epigenetics, 2015, vol. 10, no. 6, pp. 545–561. https://doi.org/10.1080/15592294.2015.1048953

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kim, E.-H., Park, A.-K., Dong, S.M., et al., Global analysis of CpG methylation reveals epigenetic control of the radiosensitivity in lung cancer cell lines, Oncogene, 2010, vol. 29, no. 33, pp. 4725–4731. https://doi.org/10.1038/onc.2010.223

    Article  CAS  PubMed  Google Scholar 

  50. Kim, J.-S., Kim, S.Y., Lee, M., et al., Radioresistance in a human laryngeal squamous cell carcinoma cell line is associated with DNA methylation changes and topoisomerase II α, Cancer Biol. Ther., 2015, vol. 16, no. 4, pp. 558–566. https://doi.org/10.1080/15384047.2015.1017154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Luzhna, L. and Kovalchuk, O., Modulation of DNA methylation levels sensitizes doxorubicin- resistant breast adenocarcinoma cells to radiation-induced apoptosis, Biochem. Biophys. Res. Commun., 2010, vol. 392, no. 2, pp. 113–117. https://doi.org/10.1016/j.bbrc.2009.12.093

    Article  CAS  PubMed  Google Scholar 

  52. Hoffman, D.R., Cornatzer, W.E., and Duerre, J.A., Relationship between tissue levels of S-adenosylmethionine, S-adenylhomocysteine, and transmethylation reactions, Can. J. Biochem., 1979, vol. 57, no. 1, pp. 56–65. https://doi.org/10.1139/o79-007

    Article  CAS  PubMed  Google Scholar 

  53. Stavrovskaya, A.A., Cellular mechanisms of multidrug resistance of tumor cells, Biochemistry (Moscow), 2000, vol. 65, no. 1, pp. 95–106.

    CAS  PubMed  Google Scholar 

  54. Rivera, A.L., Pelloski, C.E., Gilbert, M.R., et al., MGMT promoter methylation is predictive of response to radiotherapy and prognostic in the absence of adjuvant alkylating chemotherapy for glioblastoma, Neuro Oncol., 2010, vol. 12, no. 2, pp. 116–121. https://doi.org/10.1093/neuonc/nop020

    Article  CAS  PubMed  Google Scholar 

  55. Esteller, M., Garcia-Foncillas, J., Andion, E., et al., Inactivation of the DNA repair gene MGMT and the clinical response of gliomas to alkylating agents, N. Engl. J. Med., 2000, vol. 343, no. 19, pp. 1350–1354. https://doi.org/10.1056/NEJM200011093431901

    Article  CAS  PubMed  Google Scholar 

  56. Niyazi, M., Schnell, O., Suchorska, B., et al., FET-PET assessed recurrence pattern after radio- chemotherapy in newly diagnosed patients with glioblastoma is influenced by MGMT methylation status, Radiother. Oncol., 2012, vol. 104, no. 1, pp. 78–82. https://doi.org/10.1016/j.radonc.2012.04.022

    Article  PubMed  Google Scholar 

  57. Miousse, I.R. and Koturbash, I., The fine LINE: methylation drawing the cancer landscape, BioMed. Res. Int., 2015, vol. 2015, art. ID 131547. https://doi.org/10.1155/2015/131547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dote, H., Cerna, D., Burgan, W.E., et al., Enhancement of In vitro and in vivo tumor cell radiosensitivity by the DNA methylation inhibitor zebularine, Clin. Cancer Res., 2005, vol. 11, no. 12, pp. 4571–4579. https://doi.org/10.1158/1078-0432.CCR-05-0050

    Article  CAS  PubMed  Google Scholar 

  59. Kim, H.J., Kim, J.H., Chie, E.K., et al., DNMT (DNA methyltransferase) inhibitors radiosensitize human cancer cells by suppressing DNA repair activity, Radiat. Oncol., 2012, vol. 7, p. 39. https://doi.org/10.1186/1748-717X-7-39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. De Schutter, H., Kimpe, M., Isebaert, S., and Nuyts, S., A systematic assessment of radiation dose enhancement by 5-Aza-2'-deoxycytidine and histone deacetylase inhibitors in head-and-neck squamous cell carcinoma, Int. J. Radiat. Oncol. Biol. Phys., 2009, vol. 73, no. 3, pp. 904–912. https://doi.org/10.1016/j.ijrobp.2008.10.032

    Article  CAS  PubMed  Google Scholar 

  61. Camphausen, K., Burgan, W., Cerra, M., et al., Enhanced radiation-induced cell killing and prolongation of γH2AX foci expression by the histone deacetylase inhibitor MS-275, Cancer Res., 2004, vol. 64, no. 1, pp. 316–321. https://doi.org/10.1158/0008-5472.can-03-2630

    Article  CAS  PubMed  Google Scholar 

  62. Camphausen, K., Cerna, D., Scott, T., et al., Enhancement of in vitro and in vivo tumor cell radiosensitivity by valproic acid, Int. J. Cancer, 2005, vol. 114, no. 3, pp. 360–366. https://doi.org/10.1002/ijc.20774

    Article  CAS  Google Scholar 

  63. Geng, L., Cuneo, K.C., Fu, A., et al., Histone deacetylase (HDAC) inhibitor LBH589 increases duration of γ-H2AX foci and confines HDAC4 to the cytoplasm in irradiated non-small cell lung cancer, Cancer Res., 2006, vol. 66, no. 23, pp. 11298–11304. https://doi.org/10.1158/0008-5472.CAN-06-0049

    Article  CAS  PubMed  Google Scholar 

  64. Stoilov, L., Darroudi, F., Meschini, R., et al., Inhibition of repair of X-ray-induced DNA double-strand breaks in human lymphocytes exposed to sodium butyrate, Int. J. Radiat. Biol., 2000, vol. 76, no. 11, pp. 1485–1491. https://doi.org/10.1080/09553000050176243

    Article  CAS  PubMed  Google Scholar 

  65. Qiu, H., Yashiro, M., Shinto, O., et al., DNA methyltransferase inhibitor 5-aza-CdR enhances the radiosensitivity of gastric cancer cells, Cancer Sci., 2009, vol. 100, no. 1, pp. 181–188. https://doi.org/10.1111/j.1349-7006.2008.01004.x

    Article  CAS  PubMed  Google Scholar 

  66. Ahn, M.Y., Jung, J.H., Na, Y.J., and Kim, H.S., A natural histone deacetylase inhibitor, Psammaplin A, induces cell cycle arrest and apoptosis in human endometrial cancer cells, Gynecol. Oncol., 2008, vol. 108, no. 1, pp. 27–233. https://doi.org/10.1016/j.ygyno.2007.08.098

    Article  CAS  PubMed  Google Scholar 

  67. Li, Y., Geng, P.L., Jiang, W., et al., Enhancement of radiosensitivity by 5-Aza-CdR through activation of G2/M checkpoint response and apoptosis in osteosarcoma cells, Tumor Biol., 2014, vol. 35, no. 5, pp. 4831–4839. https://doi.org/10.1007/s13277-014-1634-5

    Article  CAS  Google Scholar 

  68. Shin, D.Y., Sung, K.H., Kim, G.Y., et al., Decitabine, a DNA methyltransferases inhibitor, induces cell cycle arrest at G2/M phase through p53-independent pathway in human cancer cells, Biomed. Pharmacother., 2013, vol. 67, no. 4, pp. 305–311. https://doi.org/10.1016/j.biopha.2013.01.004

    Article  CAS  PubMed  Google Scholar 

  69. Jiang, W., Li, Y.Q., Liu, N., et al., 5-Azacytidine enhances the radiosensitivity of CNE2 and SUNE1 cells in vitro and in vivo possibly by altering DNA methylation, PLoS One, 2014, vol. 9, no. 4, p. e93273. https://doi.org/10.1371/journal.pone.0093273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bansal, N., Mims, J., Kuremsky, J.G., et al., Broad phenotypic changes associated with gain of radiation resistance in head and neck squamous cell cancer, Antioxid. Redox Signaling, 2014, vol. 21, no. 2, pp. 221–236. https://doi.org/10.1089/ars.2013.5690

    Article  CAS  Google Scholar 

  71. Mims, J., Bansal, N., Bharadwaj, M.S., et al., Energy metabolism in a matched model of radiation resistance for head and neck squamous cell cancer, Radiat. Res., 2015, vol. 183, no. 3, pp. 291–304. https://doi.org/10.1667/RR13828.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Aypar, U., Morgan, W.F., and Baulch, J.E., Radiation-induced epigenetic alterations after low and high LET irradiations, Mutat. Res., 2011, vol. 707, nos. 1–2, pp. 24–33. https://doi.org/10.1016/j.mrfmmm.2010.12.003

    Article  CAS  PubMed  Google Scholar 

  73. Aypar, U., Morgan, W.F., and Baulch, J.E., Radiation-induced genomic instability: are epigenetic mechanisms the missing link? Int. J. Radiat. Biol., 2011, vol. 87, no. 2, pp. 179–191. https://doi.org/10.3109/09553002.2010.522686

    Article  CAS  PubMed  Google Scholar 

  74. Goetz, W., Morgan, M.N., and Baulch, J.E., The effect of radiation quality on genomic DNA methylation profiles in irradiated human cell lines, Radiat. Res., 2011, vol. 175, no. 5, pp. 575–587. https://doi.org/10.1667/RR2390.1

    Article  CAS  PubMed  Google Scholar 

  75. Kaup, S., Grandjean, V., Mukherjee, R., et al., Radiation-induced genomic instability is associated with DNA methylation changes in cultured human keratinocytes, Mutat. Res., 2006, vol. 597, nos. 1–2, pp. 87–97. https://doi.org/10.1016/j.mrfmmm.2005.06.032

    Article  CAS  Google Scholar 

  76. Tsumura, A., Hayakawa, T., Kumaki, Y., et al., Maintenance of self-renewal ability of mouse embryonic stem cells in the absence of DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b, Genes Cells, 2006, vol. 11, no. 7, pp. 805–814. https://doi.org/10.1111/j.1365-2443.2006.00984.x

    Article  CAS  PubMed  Google Scholar 

  77. Rugo, R.E., Mutamba, J.T., Mohan, K.N., et al., Methyltransferases mediate cell memory of a genotoxic insult, Oncogene, 2011, vol. 30, no. 6, pp. 751–756. https://doi.org/10.1038/onc.2010.480

    Article  CAS  PubMed  Google Scholar 

  78. Armstrong, C.A., Jones, G.D., Anderson, R., et al., DNMTs are required for delayed genome instability caused by radiation, Epigenetics, 2012, vol. 7, no. 8, pp. 892–902. https://doi.org/10.4161/epi.21094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Calvanese, V., Horrillo, A., Hmadcha, A., et al., Cancer genes hypermethylated in human embryonic stem cells, PLoS One, 2008, vol. 3, no. 9, p. e3294. https://doi.org/10.1371/journal.pone.0003294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wong, D.J., Liu, H., Ridky, T.W., et al., Module map of stem cell genes guides creation of epithelial cancer stem cells, Cell Stem Cell, 2008, vol. 2, no. 4, pp. 333–344. https://doi.org/10.1016/j.stem.2008.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rakova, I.A., Methylation of newly synthesized DNA in rat bone marrow and thymus after irradiation, Radiobiologiya, 1979, vol. 19, no. 3, pp. 413–416.

    CAS  Google Scholar 

  82. Giotopoulos, G., McCormick, C., Cole, C., et al., DNA methylation during mouse hemopoietic differentiation and radiation-induced leukemia, Exp. Hematol., 2006, vol. 34, no. 11, pp. 1462–1470. https://doi.org/10.1016/j.exphem.2006.06.008

    Article  CAS  PubMed  Google Scholar 

  83. Koturbash, I., Baker, M., Loree, J., et al., Epigenetic dysregulation underlies radiation-induced transgenerational genome instability in vivo, Int. J. Radiat. Oncol. Biol. Phys., 2006, vol. 66, no. 2, pp. 327–330. https://doi.org/10.1016/j.ijrobp.2006.06.012

    Article  CAS  PubMed  Google Scholar 

  84. Pogribny, I., Koturbash, I., Tryndyak, V., et al., Fractionated low-dose radiation exposure leads to accumulation of DNA damage and profound alterations in DNA and histone methylation in the murine thymus, Mol. Cancer Res., 2005, vol. 3, no. 10, pp. 553–561. https://doi.org/10.1158/1541-7786.MCR-05-0074

    Article  CAS  PubMed  Google Scholar 

  85. Loree, J., Koturbash, I., Kutanzi, K., et al., Radiation-induced molecular changes in rat mammary tissue: possible implications for radiation-induced carcinogenesis, Int. J. Radiat. Biol., 2006, vol. 82, no. 11, pp. 805–815. https://doi.org/10.1080/09553000600960027

    Article  CAS  PubMed  Google Scholar 

  86. Tryndyak, V.P., Kovalchuk, O., and Pogribny, I.P., Loss of DNA methylation and histone H4 lysine 20 trimethylation in human breast cancer cells is associated with aberrant expression of DNA methyltransferase 1, Suv4-20h2 histone methyltransferase and methyl-binding proteins, Cancer Biol. Ther., 2006, vol. 5, no. 1, pp. 65–70. https://doi.org/10.4161/cbt.5.1.2288

    Article  CAS  PubMed  Google Scholar 

  87. Raiche, J., Rodriguez-Juarez, R., Pogribny, I., and Kovalchuk, O., Sex- and tissue-specific expression of maintenance and de novo DNA methyltransferases upon low dose X-irradiation in mice, Biochem. Biophys. Res. Commun., 2004, vol. 325, no. 1, pp. 39–47. https://doi.org/10.1016/j.bbrc.2004.10.002

    Article  CAS  PubMed  Google Scholar 

  88. Kovalchuk, O., Burke, P., Besplug, J., et al., Methylation changes in muscle and liver tissues of male and female mice exposed to acute and chronic low-dose X‑ray-irradiation, Mutat. Res., 2004, vol. 548, nos. 1–2, pp. 75–84. https://doi.org/10.1016/j.mrfmmm.2003.12.016

    Article  CAS  PubMed  Google Scholar 

  89. Pogribny, I., Raiche, J., Slovack, M., and Kovalchuk, O., Dose-dependence, sex- and tissue-specificity, and persistence of radiation-induced genomic DNA methylation changes, Biochem. Biophys. Res. Commun., 2004, vol. 320, no. 4, pp. 1253–1261. https://doi.org/10.1016/j.bbrc.2004.06.081

    Article  CAS  PubMed  Google Scholar 

  90. Wang, J., Zhang, Y., Xu, K., et al., Genome-wide screen of DNA methylation changes induced by low dose X-ray radiation in mice, PLoS One, 2014, vol. 9, no. 3, p. e90804. https://doi.org/10.1371/journal.pone.0090804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Nzabarushimana, E., Miousse, I.R., Shao, L., et al., Long-term epigenetic effects of exposure to low doses of 56Fe in the mouse lung, J. Radiat. Res., 2014, vol. 55, no. 4, pp. 823–828. https://doi.org/10.1093/jrr/rru010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Jangiam, W., Tungjai, M., and Rithidech, K.N., Induction of chronic oxidative stress, chronic inflammation and aberrant patterns of DNA methylation in the liver of titanium-exposed CBA/CaJ mice, Int. J. Radiat. Biol., 2015, vol. 91, no. 5, pp. 389–398. https://doi.org/10.3109/09553002.2015.1001882

    Article  CAS  PubMed  Google Scholar 

  93. Elmhiri, G., Gloaguen, C., Grison, S., et al., DNA methylation and potential multigenerational epigenetic effects linked to uranium chronic low-dose exposure in gonads of males and females rats, Toxicol. Lett., 2018, vol. 282, pp. 64–70. https://doi.org/10.1016/j.toxlet.2017.10.004

    Article  CAS  PubMed  Google Scholar 

  94. Miousse, I.R., Shao, L., Chang, J., et al., Exposure to low-dose 56Fe-ion radiation induces long-term epigenetic alterations in mouse bone marrow hematopoietic progenitor and stem cells, Radiat. Res., 2014, vol. 182, no. 1, pp. 92–101. https://doi.org/10.1667/RR13580.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Newman, M.R., Sykes, P.J., Blyth, B.J., et al., The methylation of DNA repeat elements is sex-dependent and temporally different in response to X radiation in radiosensitive and radioresistant mouse strains, Radiat. Res., 2014, vol. 181, no. 1, pp. 65–75. https://doi.org/10.1667/RR13460.1

    Article  CAS  PubMed  Google Scholar 

  96. Lima, F., Ding, D., Goetz, W., et al., High LET 56Fe ion irradiation induces tissue-specific changes in DNA methylation in the mouse, Environ. Mol. Mutagen., 2014, vol. 55, no. 3, pp. 266–277. https://doi.org/10.1002/em.21832

    Article  CAS  PubMed  Google Scholar 

  97. Miousse, I.R., Chang, J., Shao, L., et al., Inter-strain differences in LINE-1 DNA methylation in the mouse hematopoietic system in response to exposure to low-doses of ionizing radiation, Int. J. Mol. Sci., 2017, vol. 18, no. 7, p. 1430. https://doi.org/10.3390/ijms18071430

    Article  CAS  PubMed Central  Google Scholar 

  98. Koturbash, I., Miousse, I.R., Sridharan, V., et al., Radiation-induced changes in DNA methylation of repetitive elements in the mouse heart, Mutat. Res., 2016, vol. 787, pp. 43–53. https://doi.org/10.1016/j.mrfmmm.2016.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hogart, A., Lichtenberg, J., Ajay, S.S., et al., Genome-wide DNA methylation profiles in hematopoietic stem and progenitor cells reveal overrepresentation of ETS transcription factor binding sites, Genome Res., 2012, vol. 22, no. 8, pp. 1407–1418. https://doi.org/10.1101/gr.132878.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Pogribny, I.P., Tryndyak, V.P., Bagnyukova, T.V., et al., Hepatic epigenetic phenotype predetermines individual susceptibility to hepatic steatosis in mice fed a lipogenic methyl-deficient diet, J. Hepatol., 2009, vol. 51, no. 1, pp. 176–186. https://doi.org/10.1016/j.jhep.2009.03.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Prior, S., Miousse, I. R., Nzabarushimana, E., et al., Densely ionizing radiation affects DNA methylation of selective LINE-1 elements, Environ. Res., 2016, vol. 150, pp. 470–481. https://doi.org/10.1016/j.envres.2016.06.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Impey, S., Pelz, C., Tafessu, A., et al., Proton irradiation induces persistent and tissue-specific DNA methylation changes in the left ventricle and hippocampus, BMC Genomics, 2016, vol. 17, p. 273. https://doi.org/10.1186/s12864-016-2581-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Impey, S., Jopson, T., Pelz, C., et al., Short- and long-term effects of 56Fe irradiation on cognition and hippocampal DNA methylation and gene expression, BMC Genomics, 2016, vol. 17, no. 1, p. 825. https://doi.org/10.1186/s12864-016-3110-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Impey, S., Jopson, T., Pelz, C., et al., Bi-directional and shared epigenomic signatures following proton and 56Fe irradiation, Sci. Rep., 2017, vol. 7, no. 1, pp. 102–127. https://doi.org/10.1038/s41598-017-09191-4

    Article  CAS  Google Scholar 

  105. Song, W.G., Liu, Y.Z., Liu, Y., et al., Increased P16 DNA methylation in mouse thymic lymphoma induced by irradiation, PLoS One, 2014, vol. 9, no. 4, p. e93850. https://doi.org/10.1371/journal.pone.0093850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bernal, A.J., Dolinoy, D.C., Huang, D., et al., Adaptive radiation-induced epigenetic alterations mitigated by antioxidants, FASEB J., 2013, vol. 27, no. 2, pp. 665–671. https://doi.org/10.1096/fj.12-220350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Nandakumar, V., Vaid, M., Tollefsbol, T.O., and Katiyar, S.K., Aberrant DNA hypermethylation patterns lead to transcriptional silencing of tumor suppressor genes in UVB-exposed skin and UVB-induced skin tumors of mice, Carcinogenesis, 2011, vol. 32, no. 4, pp. 597–604. https://doi.org/10.1093/carcin/bgq282

    Article  CAS  PubMed  Google Scholar 

  108. Zhu, B., Huang, X., Chen, J., et al., Methylation changes of H19 gene in sperms of X-irradiated mouse and maintenance in offspring, Biochem. Biophys. Res. Commun., 2006, vol. 340, no. 1, pp. 83–88. https://doi.org/10.1016/j.bbrc.2005.11.154

    Article  CAS  PubMed  Google Scholar 

  109. Koturbash, I., Boyko, A., and Rodriguez-Juarez, R., Role of epigenetic effectors in maintenance of the long-term persistent bystander effect in spleen in vivo, Carcinogenesis, 2007, vol. 28, no. 8, pp. 1831–1838. https://doi.org/10.1093/carcin/bgm053

    Article  CAS  PubMed  Google Scholar 

  110. Koturbash, I., Kutanzi, K., Hendrickson, K., et al., Radiation-induced bystander effects in vivo are sex specific, Mutat. Res., 2008, vol. 642, nos. 1–2, pp. 28–36. https://doi.org/10.1016/j.mrfmmm.2008.04.002

    Article  CAS  PubMed  Google Scholar 

  111. Ilnytskyy, Y., Koturbash, I., and Kovalchuk, O., Radiation-induced bystander effects in vivo are epigenetically regulated in a tissue-specific manner, Environ. Mol. Mutagen., 2009, vol. 50, no. 2, pp. 105–113. https://doi.org/10.1002/em.20440

    Article  CAS  PubMed  Google Scholar 

  112. Koturbash, I., Rugo, R.E., Hendricks, C.A., et al., Irradiation induces DNA damage and modulates epigenetic effectors in distant bystander tissue in vivo, Oncogene, 2006, vol. 25, no. 31, pp. 4267–4275. https://doi.org/10.1038/sj.onc.1209467

    Article  CAS  PubMed  Google Scholar 

  113. Lee, Y., Kim, Y.J., Choi, Y.J., et al., Radiation-induced changes in DNA methylation and their relationship to chromosome aberrations in nuclear power plant workers, Int. J. Radiat. Biol., 2015, vol. 91, no. 2, pp. 142–149. https://doi.org/10.3109/09553002.2015.969847

    Article  CAS  PubMed  Google Scholar 

  114. Cho, Y.H., Jang, Y., Woo, H.D., et al., LINE-1 hypomethylation is associated with radiation-induced genomic instability in industrial radiographers, Environ. Mol. Mutagen., 2018, vol. 60, no. 2, pp. 174–184. https://doi.org/10.1002/em.22237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Su, S.B., Jin, Y.L., Zhang, W., et al., Aberrant promoter methylation of p16 INK4a and O 6-methylguanine-DNA methyltransferase genes in workers at a Chinese uranium mine, J. Occup. Health, 2006, vol. 48, no. 4, pp. 261–266. https://doi.org/10.1539/joh.48.261

    Article  CAS  PubMed  Google Scholar 

  116. Belinsky, S.A., Klinge, D.M., Liechty, K.C., et al., Plutonium targets the p16 gene for inactivation by promoter hypermethylation in human lung adenocarcinoma, Carcinogenesis, 2004, vol. 25, no. 6, pp. 1063–1067. https://doi.org/10.1093/carcin/bgh096

    Article  CAS  PubMed  Google Scholar 

  117. Lyon, C.M., Klinge, D.M., Liechty, K.C., et al., Radiation-induced lung adenocarcinoma is associated with increased frequency of genes inactivated by promoter hypermethylation, Radiat. Res., 2007, vol. 168, no. 4, pp. 409–414. https://doi.org/10.1667/RR0825.1

    Article  CAS  PubMed  Google Scholar 

  118. Kuzmina, N.S., Lapteva, N.Sh., and Rubanovich, A.B., Hypermethylation of gene promoters in peripheral blood leukocytes in humans long term after radiation exposure, Environ. Res., 2016, vol. 146, pp. 10–17. https://doi.org/10.1016/j.envres.2015.12.008

    Article  CAS  PubMed  Google Scholar 

  119. Kuzmina N.S., Lapteva, N.Sh., Rusinova, G.G., et al., Hypermethylation of gene promoters in human blood leukocytes in a remote period after radiation exposure, Radiats. Biol., Radioekol., 2017, vol. 57, no. 4, pp. 341–356. https://doi.org/10.7868/S0869803117040014

    Article  Google Scholar 

  120. Kuzmina, N.S., Lapteva, N.Sh., Rusinova, G.G., et al., Dose dependence of hypermethylation of gene promoters in blood leukocytes in humans occupationally exposed to combined gamma- and alpha-radiation, Genetika, 2018, vol. 54, suppl., pp. S22–S26. https://doi.org/10.1134/S0016675818130118

    Article  Google Scholar 

  121. Kuzmina, N.S., Lapteva, N.Sh., Rusinova, G.G., et al., Dose dependence of hypermethylation of gene promoters in blood leukocytes in humans occupationally exposed to external γ-radiation, Biol. Bull. (Moscow), 2019, vol. 46, no. 11, pp. 1489–1495. https://doi.org/10.1134/S1062359019110062

    Article  CAS  Google Scholar 

  122. de Vocht, F., Suderman, M., Ruano-Ravina, A., et al., Residential exposure to radon and DNA methylation across the lifecourse: an exploratory study in the ALSPAC birth cohort, Wellcome Open Res., 2019, vol. 4, p. 3. https://doi.org/10.12688/wellcomeopenres.14991.2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Koturbash, I., Zemp, F., Kolb, B., and Kovalchuk, O., Sex-specific radiation-induced microRNAome responses in the hippocampus, cerebellum and frontal cortex in a mouse model, Mutat. Res., 2011, vol. 722, no. 2, pp. 114–118. https://doi.org/10.1016/j.mrgentox.2010.05.007

    Article  CAS  PubMed  Google Scholar 

  124. Wang, Y., Scheiber, M.N., Neumann, C., et al., MicroRNA regulation of ionizing radiation-induced premature senescence, Int. J. Radiat. Oncol. Biol. Phys., 2011, vol. 81, no. 3, pp. 839–848. https://doi.org/10.1016/j.ijrobp.2010.09.048

    Article  CAS  PubMed  Google Scholar 

  125. Koturbash, I., Loree, J., Kutanzi, K., et al., In vivo bystander effect: cranial X-irradiation leads to elevated DNA damage, altered cellular proliferation and apoptosis, and increased p53 levels in shielded spleen, Int. J. Radiat. Oncol. Biol. Phys., 2008, vol. 70, no. 2, pp. 554–562. https://doi.org/10.1016/j.ijrobp.2007.09.039

    Article  CAS  PubMed  Google Scholar 

  126. Cuozzo, C., Porcellini, A., Angrisano, T., et al., DNA damage, homology-directed repair, and DNA methylation, PLoS Genet., 2007, vol. 3, no. 7, p. e110. https://doi.org/10.1371/journal.pgen.0030110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Morano, A., Angrisano, T., Russo, G., et al., Targeted DNA methylation byhomology-directed repair in mammalian cells. Transcription reshapes methylation on the repaired gene, Nucleic Acids Res., 2014, vol. 42, no. 2, pp. 804–821. https://doi.org/10.1093/nar/gkt920

    Article  CAS  PubMed  Google Scholar 

  128. Maltseva, D.V. and Gromova, E.S., Interaction of murine Dnmt3a with DNA containing O6-methylguanine, Biochemistry (Moscow), 2010, vol. 75, no. 2, pp. 173–181. https://doi.org/10.1134/S0006297910020070

    Article  CAS  PubMed  Google Scholar 

  129. Mortusewicz, O., Schermelleh, L., and Walter, J., Recruitment of DNA methyltransferase I to DNA repair sites, Proc. Natl. Acad. Sci. U.S.A., 2005, vol. 102, no. 25, pp. 8905–8909. https://doi.org/10.1073/pnas.0501034102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Feng, J., Zhou, Y., Campbell, S.L., et al., Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons, Nat. Neurosci., 2010, vol. 13, no. 4, pp. 423–430. https://doi.org/10.1038/nn.2514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Mistry, H., Tamblyn, L., Butt, H., et al., UHRF1 is a genome caretaker that facilitates the DNA damage response to gamma-irradiation, Genome Integr., 2010, vol. 1, no. 1, p. 7. https://doi.org/10.1186/2041-9414-1-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Mudbhary, R., Hoshida, Y., Chernyavskaya, Y., et al., UHRF1 overexpression drives DNA hypomethylation and hepatocellular carcinoma, Cancer Cell, 2014, vol. 25, no. 2, pp. 196–209. https://doi.org/10.1016/j.ccr.2014.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Luzhna, L., Ilnytskyy, Ya., and Kovalchuk, O., Mobilization of LINE-1 in irradiated mammary gland tissue may potentially contribute to low dose radiation-induced genomic instability, Genes Cancer, 2015, vol. 6, nos. 1–2, pp. 71–81. https://doi.org/10.18632/genesandcancer.50

    Article  PubMed  PubMed Central  Google Scholar 

  134. Roman-Gomez, J., Jimenez-Velasco, A., Agirre, X., et al., Promoter hypomethylation of the LINE-1 retrotransposable elements activates sense/antisense transcription and marks the progression of chronic myeloid leukemia, Oncogene, 2005, vol. 24, no. 48, pp. 7213–7223. https://doi.org/10.1038/sj.onc.1208866

    Article  CAS  PubMed  Google Scholar 

  135. Morse, B., Rotherg, P.G., South, V.J., et al., Insertional mutagenesis of the myc locus by a LINE- 1 sequence in a human breast carcinoma, Nature, 1988, vol. 333, no. 6168, pp. 87–90. https://doi.org/10.1038/333087a0

    Article  CAS  PubMed  Google Scholar 

  136. Farkash, E.A., Kao, G.D., Horman, S.R., and Luning Prak, E.T., Gamma radiation increases endonuclease-dependent L1 retrotransposition in a cultured cell assay, Nucleic Acids Res., 2006, vol. 34, no. 4, pp. 1196–1204. https://doi.org/10.1093/nar/gkj522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Aporntewan, C., Phokaew, C., Piriyapongsa, J., et al., Hypomethylation of intragenic LINE-1 represses transcription in cancer cells through AGO2, PLoS One, 2011, vol. 6, no. 3, p. e17934. https://doi.org/10.1371/journal.pone.0017934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kapusta, A., Kronenberg, Z., Lynch, V.J., et al., Transposable elements are major contributors to the origin, diversification, and regulation of vertebrate long noncoding RNAs, PLoS Genet., 2013, vol. 9, no. 4, p. e1003470. https://doi.org/10.1371/journal.pgen.1003470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Gim, J., Ha, H., Ahn, K., et al., Genome-wide identification and classification of micro RNAs derived from repetitive elements, Genomics Inf., 2014, vol. 12, no. 4, pp. 261–267. https://doi.org/10.5808/GI.2014.12.4.261

    Article  Google Scholar 

  140. Kovalchuk, O., Burke, P., Arkhipov, A., et al., Genome hypermethylation in Pinus sylvestris of Chernobyl—a mechanism for radiation adaptation? Mutat. Res., 2003, vol. 529, nos. 1–2, pp. 13–20. https://doi.org/10.1016/s0027-5107(03)00103-9

    Article  CAS  PubMed  Google Scholar 

  141. Georgieva, M., Rashydov, N.M., and Hajduch, M., DNA damage, repair monitoring and epigenetic DNA methylation changes in seedlings of Chernobyl soybeans, DNA Repair, 2017, vol. 50, pp. 14–21. https://doi.org/10.1016/j.dnarep.2016.12.002

    Article  CAS  PubMed  Google Scholar 

  142. Volkova, P.Yu., Geras’kin, S.A., Horemans, N., et al., Chronic radiation exposure as an ecological factor: hypermethylation and genetic differentiation in irradiated Scots pine populations, Environ. Pollut., 2018, vol. 232, pp. 105–112. https://doi.org/10.1016/j.envpol.2017.08.123

    Article  CAS  PubMed  Google Scholar 

  143. Ye, S., Yuan, D., Xie, Y., et al., Role of DNA methylation in long-term low-dose gamma-rays induced adaptive response in human B lymphoblast cells, Int. J. Radiat. Biol., 2013, vol. 89, no. 11, pp. 898–906. https://doi.org/10.3109/09553002.2013.806832

    Article  CAS  PubMed  Google Scholar 

  144. Ding, N., Bonham, E.M., Hannon, B.E., et al., Mismatch repair proteins recruit DNA methyltransferase 1 to sites of oxidative DNA damage, J. Mol. Cell Biol., 2016, vol. 8, no. 3, pp. 244–254. https://doi.org/10.1093/jmcb/mjv050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. O’Hagan, H.M., Chromatin modifications during repair of environmental exposure-induced DNA damage: a potential mechanism for stable epigenetic alterations, Environ. Mol. Mutagen., 2014, vol. 55, no. 3, pp. 278–291. https://doi.org/10.1002/em.21830

    Article  CAS  PubMed  Google Scholar 

  146. O’Hagan, H.M., Mohammad, H.P., and Baylin, S.B., Double strand breaks can initiate gene silencing and SIRT1-dependent onset of DNA methylation in an exogenous promoter CpG island, PLoS Genet., 2008, vol. 4, no. 8, p. e1000155. https://doi.org/10.1371/journal.pgen.1000155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. O’Hagan, H.M., Wang, W., Sen, S., et al., Oxidative damage targets complexes containing DNA methyltransferases, SIRT1, and polycomb members to promoter CpG Islands, Cancer Cell., 2011, vol. 20, no. 5, pp. 606–619. https://doi.org/10.1016/j.ccr.2011.09.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Lorat, Y., Timm, S., Jakob, B., et al., Clustered double-strand breaks in heterochromatin perturb DNA repair after high linear energy transfer irradiation, Radiother. Oncol., 2016, vol. 121, no. 1, pp. 154–161. https://doi.org/10.1016/j.radonc.2016.08.028

    Article  CAS  PubMed  Google Scholar 

  149. Kongruttanachok, N., Phuangphairoj, C., Thongnak, A., et al., Replication independent DNA double-strand break retention may prevent genomic instability, Mol. Cancer, 2010, vol. 9, p. 70. https://doi.org/10.1186/1476-4598-9-70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Pornthanakasem, W., Kongruttanachok, N., Phuangphairoj, C., et al., LINE-1 methylation status of endogenous DNA double-strand breaks, Nucleic Acids Res., 2008, vol. 36, pp. 3667–3675. https://doi.org/10.1093/nar/gkn261

  151. Kane, A.E. and Sinclair, D.A., Epigenetic changes during aging and their reprogramming potential, Crit. Rev. Biochem. Mol. Biol., 2019, vol. 54, no. 1, pp. 61–83. https://doi.org/10.1080/10409238.2019.1570075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Cecco, M., De Criscione, S.W., Peterson, A.L., et al., Transposable elements become active and mobile in the genomes of aging mammalian somatic tissues, Aging (Albany, NY), 2013, vol. 5, no. 12, pp. 867–883. https://doi.org/10.18632/aging.100621

    Article  Google Scholar 

  153. Booth, L. and Brunet, A., The aging epigenome, Mol. Cell., 2016, vol. 62, no. 5, pp. 728–744. https://doi.org/10.1016/j.molcel.2016.05.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Webb, A.E., Kundaje, A., and Brunet, A., Characterization of the direct targets of FOXO transcription factors throughout evolution, Aging Cell, 2016, vol. 15, no. 4, pp. 673–685. https://doi.org/10.1111/acel.12479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Zhang, Y., Smith, C.L., Saha, A., et al., DNA translocation and loop formation mechanism of chromatin remodeling by SWI/SNF and RSC, Mol. Cell., 2006, vol. 24, no. 4, pp. 559–568. https://doi.org/10.1016/j.molcel.2006.10.025

    Article  CAS  PubMed  Google Scholar 

  156. Lake, R.J., Boetefuer, E.L., Won, K., and Fan, H., The CSB chromatin remodeler and CTCF architectural protein cooperate in response to oxidative stress, Nucleic Acids Res., 2016, vol. 44, no. 5, pp. 2125–2135. https://doi.org/10.1093/nar/gkv1219

    Article  CAS  PubMed  Google Scholar 

  157. Lu, T., Aron, L., Zullo, J., et al., REST and stress resistance in ageing and Alzheimer’s disease, Nature, 2014, vol. 507, no. 7493, pp. 448–454. https://doi.org/10.1038/nature13163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Anckar, J. and Sistonen, L., Regulation of HSF1 function in the heat stress response: implications in aging and disease, Annu. Rev. Biochem., 2011, vol. 80, pp. 1089–1115. https://doi.org/10.1146/annurev-biochem-060809-095203

    Article  CAS  PubMed  Google Scholar 

  159. Gritsenko, D.A., Orlova, O.A., Linkova, N.S., and Khavinson, V.K., Transcription factor p53 and skin aging, Adv. Gerontol., 2017, vol. 7, no. 2, pp. 114–119.

    Article  Google Scholar 

  160. Maegawa, S., Hinkal, G., Kim, H.S., et al., Widespread and tissue specific age-related DNA methylation changes in mice, Genome Res., 2010, vol. 20, no. 3, pp. 332–340. https://doi.org/10.1101/gr.096826.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Teschendorff, A.E., Menon, U., Gentry-Maharaj, A., et al., Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer, Genome Res., 2010, vol. 20, no. 4, pp. 440–446. https://doi.org/10.1101/gr.103606.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Bocker, M.T., Hellwig, I., Breiling, A., et al., Genome-wide promoter DNA methylation dynamics of human hematopoietic progenitor cells during differentiation and aging, Blood, 2011, vol. 117, no. 19, pp. 182–190. https://doi.org/10.1182/blood-2011-01-331926

    Article  CAS  Google Scholar 

  163. Raddatz, G., Hagemann, S., Aran, D., et al., Aging is associated with highly defined epigenetic changes in the human epidermis, Epigenet. Chromatin, 2013, vol. 6, no. 1, p. 36. https://doi.org/10.1186/1756-8935-6-36

    Article  CAS  Google Scholar 

  164. Mcclay, J.L., Aberg, K.A., Clark, S.L., et al., A methylome-wide study of aging using massively parallel sequencing of the methyl-CpG-enriched genomic fraction from blood in over 700 subjects, Hum. Mol. Genet., 2014, vol. 23, no. 5, pp. 1175–1185. https://doi.org/10.1093/hmg/ddt511

    Article  CAS  PubMed  Google Scholar 

  165. Lund, J. B., Li, S., Baumbach, J., et al., DNA methylome profiling of all-cause mortality in comparison with age-associated methylation patterns, Clin. Epigenet., 2019, vol. 11, p. 23. https://doi.org/10.1186/s13148-019-0622-4

    Article  Google Scholar 

Download references

Funding

This work was supported in part by a State Assignment of the Ministry of Science and Higher Education of the Russian Federation within the topic “Genetic Technologies in Biology, Medicine, Agricultural, and Environmental Activities,” project no. 0112-2019-0002, subtopic “Environmental Genotoxicants and Antigenoxicants: Markers of Distant Effects and Genetic Risks for Development of Common Diseases.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Kuzmina.

Ethics declarations

The authors declare that they have no conflict of interest.

This article does not contain any studies involving human participants or animals performed by any of the authors.

Additional information

Translated by A. Barkhash

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzmina, N.S. Radiation-Induced DNA Methylation Disorders: In Vitro and In Vivo Studies. Biol Bull Russ Acad Sci 48, 2015–2037 (2021). https://doi.org/10.1134/S1062359021110066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359021110066

Keywords:

Navigation