Skip to main content
Log in

Characterization of Substituted 1,3-Dioxolanes and 1,3-Dioxanes by Gas Chromatography–Mass Spectrometry

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

Until recently, one of the reasons for the unsatisfactory characterization of alicyclic ketals of aliphatic and alkylaromatic ketones was the absence of any mention of the presence of such compounds in natural samples. Another reason is in the low yields of such ketals on the interaction of ketones and diols under the conditions of conventional acid catalysis. To optimize the synthesis of trace amounts of such ketals, we used cobalt(II) bromide and dimethyl glyoxime as catalysts. The simplest chromatographic parameters, including the difference between the retention indices of the products and the starting compounds (difference in retention indices, DRI), are effective for identifying the target ketals in reaction mixtures. Such combined chromatography–mass spectrometric characteristics as homologous increments of retention indices (iRI) are informative not only for the group identification of analytes (assignment to the corresponding homologous series) and the assessment of their molecular weights (at low-intense signals of molecular ions). They are also useful for the determination of the total number of branches of the sp3-carbon skeleton of molecules (N) using the regression of NaiRI + b.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.

Similar content being viewed by others

Notes

  1. In the NIST database [1], medians of the mean values and their standard deviations and ranges, rather than mean values, are given to characterize the data samples.

REFERENCES

  1. The NIST 17 Mass Spectral Library (NIST17/2017/EPA/NIH). Data Version (NIST17); NIST Standard Reference Database no. 69, June 2017, Gaithersburg, MD: Natl. Inst. Standards Technol. http://webbook.nist.gov. Accessed November 2019.

  2. Zenkevich, I.G. and Lukina, V.M., Analitika Kontrol’, 2019, vol. 23, no. 3, p. 410.

    Google Scholar 

  3. Zenkevich, I.G. and Fakhretdinova, L.N., J. Anal. Chem., 2016, vol. 71, no. 12, p. 1204.

    Article  CAS  Google Scholar 

  4. Bogoslovskii, Yu.N., Anvaer, B.I., and Vigdergauz, M.S., Khromatograficheskie postoiannye v gazovoi khromatografii (Chromatographic Constants in Gas Chromatography), Moscow: Standart, 1978.

  5. Ramsey, J.D. and Flanagan, R.J., J. Chromatogr. A, 1982, vol. 240, no. 2, p. 423.

    Article  CAS  Google Scholar 

  6. Winskowski, J., Chromatographia, 1983, vol. 17, no. 3, p. 160.

    Article  CAS  Google Scholar 

  7. Streete, P.J., Ruprah, M., Ramsey, J.D., et al., Analyst, 1992, vol. 117, no. 7, p. 1111-.

    Article  CAS  Google Scholar 

  8. Misharina, T.A., Golovnya, R.V., and Yakovleva, V.N., Zh. Anal. Khim., 1992, vol. 47, no. 3, p. 304.

    CAS  Google Scholar 

  9. Misharina, T.A. and Golovnya, R.V., Zh. Anal. Khim., 1994, vol. 49, no. 4, p. 395.

    CAS  Google Scholar 

  10. Duque, C., Bonilla, A., Bautista, E., et al., Biochem. System. Ecol., 2001, vol. 29, no. 5, p. 459.

    Article  CAS  Google Scholar 

  11. Kourkoutas, Y., Bosnea, L., Taboukos, S., et al., J. Dairy Sci., 2006, vol. 89, no. 5, p. 1439.

    Article  CAS  Google Scholar 

  12. Kurdina, Z.G., Markovich, V.E., and Sakharov, V.M., Gaz. Khromatogr., 1969, no. 10, p. 128.

  13. Misharina, T.A., Golovnya, R.V., and Beletskii, I.V., Russ. Chem. Bull., 1993, vol. 42, no. 7, p. 1167.

    Article  Google Scholar 

  14. Korany, K., Mednyanszky, Zs., and Amtmann, M., Acta Aliment., 2000, vol. 29, no. 2, p. 187.

    Article  CAS  Google Scholar 

  15. Ngassoum, M.B., Jirovetz, L., and Buchbauer, G., Eur. Food Res. Technol., 2001, vol. 213, no. 1, p. 18.

    Article  CAS  Google Scholar 

  16. Sampao, T.S. and Nogueira, P.C.L., Food Chem., 2006, vol. 95, no. 4, p. 606.

    Article  Google Scholar 

  17. Setkova, L., Risticevic, S., and Pawliszyn, J., J. Chromatogr. A, 2007, vol. 1147, no. 2, p. 224.

    Article  CAS  Google Scholar 

  18. Rotsatschakul, P., Visesanguan, W., Smitinont, T., et al., Int. Food Res., 2009, vol. 16, p. 391–414.

    Google Scholar 

  19. Robinson, A.L., Adams, D.O., Boss, P.K., et al., Am. J. Enol. Vitic., 2012, vol. 64, no. 4, p. 467.

    Article  Google Scholar 

  20. Souza, J.B.G., Ré-Poppi, N., and Raposo, J.L., Jr., J. Braz. Chem. Soc., 2012, vol. 23, no. 4, p. 610.

    CAS  Google Scholar 

  21. Wang, H., Guo, Y., Zhang, Z., et al., J. Instrum. Anal., 2004, vol. 23, no. 1, p. 9.

    Google Scholar 

  22. Ledauphin, J., Saint-Clair, J.-F., Lablanquie, O., et al., J. Agric. Food Chem., 2004, vol. 52, no. 16, p. 5124.

    Article  CAS  Google Scholar 

  23. Yu, T.-H., Wu, C.-M., Rosen, R.T., et al., J. Agric. Food Chem., 1994, vol. 42, no. 1, p. 146.

    Article  CAS  Google Scholar 

  24. Vazquez, A.M., Demmel, G.I., Criado, S.G., et al., Bol. Latinoam. Caribe Plant. Med. Aromat., 2011, vol. 10, no. 4, p. 351.

    CAS  Google Scholar 

  25. Tudor, E., Moldovan, D., and Zama, N., Rev. Roum. Chim., 1999, vol. 44, no. 7, p. 665.

    CAS  Google Scholar 

  26. Pozo-Bayón, M.A., Ruíz-Rodríquez, A., Pernin, K., et al., J. Agric. Food Chem., 2007, vol. 55, p. 1418.

    Article  Google Scholar 

  27. Leffingwell, J.C. and Alford, D., Electron. J. Environ. Agric. Food Chem., 2005, vol. 4, no. 2, p. 899.

    Google Scholar 

  28. Zenkevich, I.G., Kharicheva, E.M., and Kostikov, R.R., Russ. J. Org. Chem., 1999, vol. 35, no. 11, p. 1567.

    CAS  Google Scholar 

  29. Drozd, J., Chemical Derivatization in Gas Chromatography, Amsterdam: Elsevier, 1981.

    Google Scholar 

  30. Zenkevich, I.G., in Encyclopedia of Chromatography, Cazes, J., Ed., New York: Taylor & Francis, 2010, 3rd ed., vol. 1, p. 562.

    Google Scholar 

  31. Zenkevich, I.G., in Encyclopedia of Chromatography, Cazes, J., Ed., New York: Taylor & Francis, 2010, 3rd ed., vol. 1, p. 310.

    Google Scholar 

  32. Banik, B.K., Chapa, M., Marquez, J., et al., Tetrahedron Lett., 2005, vol. 46, p. 2341.

    Article  CAS  Google Scholar 

  33. Zong, Y., Yang, L., Tang, S., et al., Catalysis, 2018, vol. 8, no. 2, p. 48.

    Google Scholar 

  34. Sugimura, T., Tei, T., Mori, A., et al., J. Am. Chem. Soc., 2000, vol. 122, p. 2128.

    Article  CAS  Google Scholar 

  35. Karimi, B., Ebrahimian, G.R., and Seradj, H., Org. Lett., 1999, vol. 1, no. 11, p. 1737.

    Article  CAS  Google Scholar 

  36. Dong, J.-L., Yu, L.-S.-H., and Xie, J.-X., ACS Omega, 2018, vol. 3, p. 4974.

    Article  CAS  Google Scholar 

  37. Jafari, F. and Khodabakhshi, S., Org. Chem. Int., 2012, 475301.

  38. Zenkevich, I.G. and Nosova, V.E., J. Anal. Chem., 2019, vol. 74, no. 13, p. 1305.

    Article  CAS  Google Scholar 

  39. Zenkevich, I.G. and Nosova, V.E., J. Anal. Chem., 2019, vol. 74, no. 14, p. 1421.

    Article  CAS  Google Scholar 

  40. Zenkevich, I.G., Zh. Org. Khim., 1992, vol. 29, no. 9, p. 1827.

    Google Scholar 

  41. Zenkevich, I.G. and Ioffe, B.V., Interpretatsia mass-spektrov organicheskikh soedinenii (Interpretation of Mass Spectra of Organic Compounds), Leningrad: Khiiya, 1986.

  42. Zenkevich, I.G., Russ. J. Gen. Chem., 2019, vol. 89, no. 3, p. 369.

    Article  CAS  Google Scholar 

  43. Vulfson, N.S., Zaikin, V.G., and Mikaia, A.I., Mass spektrometria organicheskikh soedinenii (Mass Spectrometry of Organic Compounds), Moscow: Khimiya, 1986.

  44. Hamming, M.G. and Foster, N.G., Interpretation of Mass Spectra of Organic Compounds, New York: Academic, 1979.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The study is carried out using the equipment of the Resource Center in the field of “Chemistry” at the Institute of Chemistry, St. Petersburg State University. The authors are grateful to all colleagues working at the Center for assistance.

Funding

This work was supported by the Russian Foundation for Basic Research, grant no. 18-03-001512a for the Institute of Chemistry, St. Petersburg State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Zenkevich.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by O. Zhukova

ADDITIONAL INFORMATION

I.G. Zenkevich: ORCID ID 0000-0001-8975-2257.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eliseenkov, E.V., Zenkevich, I.G. Characterization of Substituted 1,3-Dioxolanes and 1,3-Dioxanes by Gas Chromatography–Mass Spectrometry. J Anal Chem 75, 1790–1807 (2020). https://doi.org/10.1134/S1061934820140087

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934820140087

Keywords:

Navigation