Skip to main content
Log in

Determination of Free and Esterified Fatty Acids in Hydrocoles of Different Content of Polyunsaturated Fatty Acids by Gas–liquid Chromatography

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

In a word, I have become cognisant of many, many things…

but still I am not yet satisfied. My spirit still thirsts for further knowledge…

St. John of Kronstadt

Abstract

This paper presents a new technique of hydrocole (bacteria, blue−green algae, phytoplankton, zooplankton, sponges, fish oil and seal fat) fatty acids (FA) methyl esters determination by gas-liquid chromatography. The polyunsaturated fatty acids (PUFA) contents in these objects were different. The distinguishing features of the technique are the next ones: efficiency, lipid extraction recovery ≥94% using the sonication during 10–15 min without sample drying, high PUFAs yield (≥97%) by reduction of oxidation up to 40% during methylation; exhaustive extraction of fatty acid methyl esters (FAMEs) including PUFA; a new approach to obtain of methyl esters of free fatty acids except using toxic reagents; accuracy of FAMEs quantification including ω-3-, ω-6-, ω-9-FA using the di-n-decyl ether as an internal standard and accuracy of measurements using “T14165QC Fish oil” standard sample (first). The technique is approbated for Baikal hydrocole FA determination from 20 to 2000 μg in the sample and might be used for scientific and applied tasks. The interlaboratory precision of FAME determination of phytoplankton and bacteria is ≤10%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Kulakovskaya, E.V. and Mironov, A.A., Appl. Biochem. Microbiol., 2016, vol. 52, no. 6, p. 615.

    Article  CAS  Google Scholar 

  2. Suzuki, K.I. and Komagata, K., Int. J. Syst. Bacteriol., 1983, vol. 83, no. 2, p. 188.

    Article  Google Scholar 

  3. O’Leary, W.M., Bacteriol. Rev., 1962, vol. 26, no. 4, p. 421.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Takai, K., Inoue, A., and Horikoshi, K., Int. J. Syst. Bacteriol., 1999, vol. 49, p. 619.

    Article  CAS  PubMed  Google Scholar 

  5. Spanevello, M., Yamamoto, H., and Patel, B.K.C., Int. J. Syst. Evol. Microbiol., 2002, vol. 52, p. 795.

    CAS  PubMed  Google Scholar 

  6. Řezanka, T., Dor, I., Prell, A., and Dembitsky, V.M., Folia Microbiol. (Dordrecht, Neth.), 2003, vol. 48, no. 1, p. 71.

  7. Řezanka, T., Víden, I., Go, J.V., Dor, I., and Dembitsky, V.M., Folia Microbiol. (Dordrecht, Neth.), 2003, vol. 48, no. 6, p. 781.

  8. Li, R., Yokota, A., Sugiyama, J., Watanabe, M., Hiroki, M., and Watanabe, M.M., Phycol. Res., 1998, vol. 46, no. 1, p. 21.

    Article  CAS  Google Scholar 

  9. Guides, A.C., Amaro, H.M., Barbosa, C.R., Pereira, R.D., and Malcata, F.X., Food Res. Int., 2001, vol. 44, p. 2721.

    Article  CAS  Google Scholar 

  10. Younsi, M., Ramanandraibe, E., Bonaly, R., Donner, M., and Coulon, J., Antimicrob. Agents Chemother., 2000, vol. 44, no. 7, p. 1911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhila, N.O. and Kalacheva, G.S., J. Appl. Phycol., 2011, vol. 23, p. 47.

    Article  CAS  Google Scholar 

  12. Wagenen, J.V., Miller, T.W., Hobbs, S., Hook, P., Crowe, B., and Huesemann, M., Energies, 2012, vol. 5, p. 731.

    Article  CAS  Google Scholar 

  13. Temperature Adaptation in a Changing Climate: Nature at Risk (Climate & Weather), Storey, K.B. and Tanino, K.K., Eds., CAB Int., 2012, p. 238.

    Google Scholar 

  14. Kirpenko, N.I., Usenko, O.M., and Musii, T.O., Gidrobiol. Zh. 2016, vol. 52, no. 6, p. 74.

    Google Scholar 

  15. Braun, A.D. and Mozhenok, T.P., Nespetsificheskii adaptatsionnyi sindrom kletochnoi sistemy (Nonspecific Adaptation Syndrome of a Cellular System), Leningrad: Nauka, 1987.

  16. Abedi, E. and Sahari, A.M., Food Sci. Nutr., 2014, vol. 2, no. 5, p. 443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li, Y., Naghdi, F.G., Garg, S., Adarme-Vega, T.C., Thurecht, K.J., Ghafor, W.A., Tannock, S., and Schenk, M., Microb. Cell Fact., 2014, vol. 13, no. 14, р. 1. https:// www.ncbi.nlm.nih.gov/pmc/articles/ PMC3926349/. https://doi.org/10.1186/1475-2859-13-14

  18. Hiltunen, M., The role of zooplankton in the trophic transfer of fatty acids in boreal lakes food web, PhD Thesis, Joensu, Finland: Univ. Eastern Finland, 2015; Publ. Univ. Eastern Finland Dissertations in Forestry and Natural Sciences, 2015, no. 210, p. 66.

  19. Bazarsadueva, S.V. and Radnaeva, L.D., Khim. Interesakh Ustoich. Razvit., 2013, no. 21, p. 533.

  20. Murzina, S.A., Nefedova, Z.A., and Nemova, N.N., Tr.Karelsk. Nauchn. Tsentra, 2012, no. 2, p. 18.

  21. Perhap, G.M., Arhonditsis, G.B., and Brett, M.T., Environ. Rev., 2012, vol. 20, no. 3, p. 155.

    Article  Google Scholar 

  22. Glyzina, O.Yu., Dzyuba, E.V., Smirnova-Zalumi, N.S., Basharina, T.N., Smirnov, V.V., and Glyzin, A.V., Khim. Interesakh Ustoich. Razvit., 2010, no. 18, p. 139.

  23. Aveina, E.S., Pintaeva, E.Ts., and Radnaeva, L.D., Vestn. Buryat. Gos. Univ., 2009, no. 3, p. 61.

  24. Kozlova, T.A. and Khotimchenko, S.V., Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 2000, vol. 126, no. 4, p. 477.

    Article  CAS  Google Scholar 

  25. Basova, M.M., Al’gologiya, 2005, vol. 15, no. 4, p. 415.

    Google Scholar 

  26. Sushchik, N.N., Zh. Obshch. Biol., 2008, vol. 69, no. 4, p. 299.

    Google Scholar 

  27. Deineka, V.I., Gabruk, N.G., Fofanov, G.M., Deineka, L.A., Manokhina, L.A., and Sidel’nikova, N.A., J. Anal. Chem., 2003, vol. 58, no. 12, p. 1160.

    Article  CAS  Google Scholar 

  28. Kulichenko, S.A. and Shevchenko, A.M., J. Anal. Chem., 2003, vol. 58, no. 1, p. 58.

    Google Scholar 

  29. GOST (State Standard) 5476-80 (ST-SEV 4715-84): Vegetable oils. Methods for Determination of Acid Value, Moscow: Izd. Standartov, 1998.

  30. Lapshina, T.M., Sharudina, S.Ya., and Tur’yan, Ya.I., USSR Patent 1825423, 1993.

  31. Lapshina, T.M., Tur’yan, Ya.I., and Danil’chuk, S.I., Zh. Anal. Khim., 1991, vol. 46, no. 6, p. 1150.

    CAS  Google Scholar 

  32. Ashworth, M.R.F., Titrimetric Organic Analysis, vol. 2: Indirect Methods, New York: Interscience, 1965.

    Google Scholar 

  33. Ruvinskii, O.E., Vyskubova, E.N., and Sharudina, S.Ya., Izv. Vyssh. Uchebn. Zaved., Pishch. Tekhnol., 2000, no. 4, p. 108.

  34. Strel’nikova, E.B., Stakhina, L.D., and Petrenko, T.V., J. Anal. Chem., 2009, vol. 64, no. 1, p. 8.

    Article  CAS  Google Scholar 

  35. Ivanova, L.V., Koshelev, V.N., Sokova, N.A., Burov, E.A., and Primerova, O.V., Tr.—Mosk. Inst. Neftekhim. Gazov. Prom-sti. im. I. M. Gubkina, 2013, no. 1(270), p. 68.

  36. Rakhman’ko, E.M., Zhilko, V.V., and Egorov, V.V., J. Anal. Chem., 2005, vol. 60, no. 1, p. 16.

    Article  Google Scholar 

  37. Folch, J., Lees, M., and Stanley, G.H.S., J. Biol. Chem., 1957, vol. 226, no. 1, p. 497.

    CAS  PubMed  Google Scholar 

  38. Ryzhova, G.L., Tyunina, M.A., and Dychko, K.A., J. Anal. Chem., 2003, vol. 68, no. 8, p. 736.

    Article  CAS  Google Scholar 

  39. Blight, E.G. and Dyer, W.J., Can. J. Biochem. Physiol., 1959, vol. 37, no. 8, p. 911.

    Article  Google Scholar 

  40. Khasanov, V.V., Makarycheva, A.I., and Slizhov, Yu.G., J. Anal. Chem., 2003, vol. 68, no. 8, p. 1028.

    Google Scholar 

  41. Ukolov, A.I., Orlova, T.I., Savel’eva, V.I., and Radilov, A.S., J. Anal. Chem., 2015, vol. 70, no. 9, p. 1123.

    Article  CAS  Google Scholar 

  42. Orlova, T.I., Ukolov, A.I., Savel’eva, V.I., and Radilov, A.S., Analitika Kontrol’, 2015, vol. 19, no. 2, p. 183.

    Google Scholar 

  43. Kornprobst, J.M. and Barnathan, G., Mar. Drugs, 2010, vol. 8, no. 10, p. 2569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chiu, S.Y., Kao, C.Y., Chen, C.H., Kuan, T.C., Ong, S.C., and Lin, C.S., Bioresour. Technol., 2008, vol. 99, no. 9, p. 3389.

    Article  CAS  PubMed  Google Scholar 

  45. Tsai, H.P., Chuang, L.T., and Chen, C.N.N., Food Chem., 2016, vol. 1, no. 192, p. 682.

    Article  CAS  Google Scholar 

  46. Latyshev, N.A., Zhukova, N.V., Efremova, S.M., I-mbs, A.B., and Glysina, O.Y., Comp. Biochem. Physio-l., Part B: Biochem. Mol. Biol., 1992, vol. 102, no. 4, p. 961.

    Article  Google Scholar 

  47. Glyzina, O.Yu., Bazarsadueva, S.V., Glyzin, A.V., and Radnaeva, L.D., Ekologiya, 2016, no. 2, p. 152.

  48. Rod’kina, S.A., Izv. Tikhookean. Nauchno-Issled.Inst. Rybn. Khoz. Okeanogr., 2003, vol. 135, p. 327.

    Google Scholar 

  49. Iverson, S.J., Lang, S.L., and Cooper, M.H., Lipids, 2001, vol. 36, no. 11, p. 1283.

    Article  CAS  PubMed  Google Scholar 

  50. Christie, W.W., Adv. Lipid Methodol., 1993, vol. 2, p. 69.

    Google Scholar 

  51. Leveille, J.-C., Amblard, C., and Bourdier, G., J. Plankton Res., 1997, vol. 19, no. 4, p. 469.

    Article  CAS  Google Scholar 

  52. Ivankin, A.N., Oliferenko, G.L., Kulikovskii, A.V., Chernukha, I.M., Semenova, A.A., Spiridonov, K.I., and Nasonova, V.V., J. Anal. Chem., 2016, vol. 71, no. 11, p. 1131.

    Article  CAS  Google Scholar 

  53. Taipale, S., Strandberg, U., Peltomaa, E., Galloway, A., Ojala, A., and Brett, M.T., Aquat. Microbiol. Ecol., 2013, vol. 71, p. 165.

    Article  Google Scholar 

  54. Li, Y., Naghdi, F.G., GArg, S., Adarme-Vega, T.C., Thurecht, K.J., Ghafor, W.A., Tannock, S., and Schenk, P.M., Microb. Cell Fact., 2014, vol. 13, no. 14. https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC3926349/. https://doi.org/10.1186/1475-2859-13-14

  55. Smagunova, A.N., Metody matematicheskoi statistiki v analiticheskoi khimii (Methods of Mathematical Statistics in Analytical Chemistry), Irkutsk: Irkutsk. Gos. Univ., 2008.

  56. Albert, B.B., Cameron-Smith, D., Hofman, P.L., and Cutfield, W.S., BioMed Res., vol. 2013, 464921. https://doi.org/10.1155/2013/464921

  57. James, A.T. and Martin, A.G.P., Biochem. J., 1956, vol. 63, no. 1, p. 144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Brunton, N.P., Mason, C., and Collins, M.J.J., J. Anal. Chem., 2015, vol. 70, p. 1218.

    Article  CAS  Google Scholar 

  59. Fournier, V., Destaillats, F., Juaneda, P., Dionisi, F., Lambelet, P., Sebedio, J.-L., and Berdeaux, O., Eur. J. Lipid Sci. Technol., 2006, no. 108, p. 33.

  60. Ichihara, K. and Fukubayashy, Y., J. Lipid Res., 2010, vol. 51, p. 635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sicko-Goad, L., Lazinsky, D., Hall, J., and Simmons, M.S., Arch. Environ. Contam. Toxicol., 1989, vol. 18, p. 629.

    Article  CAS  PubMed  Google Scholar 

  62. Zaikin, V. and Halket, J.M., A Handbook of Derivatives for Mass Spectrometry, Chichester: IM, 2009.

  63. Rosenfeld, J.M., Anal. Chim. Acta, 2002, vol. 465, p. 93.

    Article  CAS  Google Scholar 

  64. GOST (State Standard) R 51486-99: Vegetable Oils and Animal Fats. Preparation of Methyl Esters of Fatty Acids, Moscow: Izd. Standartov, 2001.

  65. Vereshchagin, A.L., Glyzina, O.Yu., Basharina, T.N., Safonova, T.A., Latyshev, N.A., Lyubochko, S.A., Korneva, E.S., Petrova, D.P., Annenkov, V.V., Danilovtseva, E.N., Chebykin, E.P., Volokitina, N.A., and Grachev, M.A., Biotekhnologiya, 2008, no. 4, p. 55.

  66. Leu, E., Daase, M., Schulz, K.G., Stuhr, A., and Riebesell, U., Biogeosciences, 2013, vol. 10, p. 1143.

    Article  CAS  Google Scholar 

  67. Maghraby, D.M.E. and Fakhry, E.M., Oceanologia, 2015, vol. 57, p. 86.

    Article  Google Scholar 

  68. Christie, W.W., Gas Chromatography and Lipids, Ayr, Scotland: The Oily Press, 1989, p. 307.

    Google Scholar 

  69. Shishlyannikov, S.M., Nikonova, A.A., Bukin, U.S., and Gorshkov, A.G., Ecol. Indic., 2018, vol. 85, p. 878.

    Article  CAS  Google Scholar 

  70. Widdel, F. and Back, F., in The Prokaryotes, Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., and Stackebrandt, E., Eds., New York: Springer, 1992, 3rd ed., vol. 4, p. 787.

    Google Scholar 

  71. Gladyshev, M.I., Emelianova, A.Y., and Kalachova, G.S., Hydrobiologia, 2000, vol. 431, p. 155.

    Article  CAS  Google Scholar 

  72. Koussoroplis, A.-M., Bec, A., Perga, M.-E., Koutrakis, E., Desvilettes, C., and Bourdier, G., Mar. Ecol.: Prog. Ser., 2010, vol. 404, p. 207.

    Article  CAS  Google Scholar 

  73. Krop, H.B., Velzen, J.M., Parsons, J.R., and Govers, H.A.J., J. Am. Oil Chem. Soc., 1997, vol. 74, no. 3, p. 309.

    Article  CAS  Google Scholar 

  74. Sander, R., Compilation of Henry’s Law Constants for Inorganic and Organic Species of Potential Importance in Environmental Chemistry, Mainz: Max-Planck Inst. Chem., 1999.

    Google Scholar 

  75. Jiménez-Valera, S. and Sánchez-Saavedra, M.P., Lat. Am. J. Aquat. Res., 2016, vol. 44, no. 4, p. 689.

    Article  Google Scholar 

  76. Knaggs, M., FAPAS—Food Chemistry Proficiency Test Report 14165, Omega-3, Omega-6 and Omega-9 Fatty Acids in Fish Oil, September–November 2016, Sand Hutton, UK: FAPAS, 2016.

  77. Zakharova, Yu.V. and Sukhikh, A.S., Sorbtsionnye Khromatogr.Protsessy, 2015, vol. 15, no. 6, p. 776.

    CAS  Google Scholar 

  78. Falk-Petersen, S., Sargent, J.R., Henderson, J., Hegseth, E.N., Hop, H., and Okolodkov, Y.B., Polar Biol., 1998, vol. 20, p. 41.

    Article  Google Scholar 

  79. Babitskaya, V.G., Chernook, T.V., Shcherba, V.V., Puchkova, T.A., Filimonova, T.V., and Osadchaya, O.V., Vestn. Belorus. Gos. Univ. Ser. 2:K-him. Biol. Geogr., 2009, vol. 4, part 1, p. 101.

    Google Scholar 

  80. Vel’kov, V.V., Lab. Zh. Vrachei, 2008, no. 1, p. 16.

  81. Sakurai, T., Miyazawa, S., and Hashimoto, T., J. Biochem., 1978, vol. 83, no. 1, p. 313.

    Article  CAS  PubMed  Google Scholar 

  82. Xu, Y., Agrawal, S., Cook, T.J., and Knipp, G.T., Placenta, 2008, vol. 29, no. 11, p. 962.

Download references

ACKNOWLEDGMENTS

The authors thank the Head of the Laboratory of Hydrochemistry and Chemistry of the Atmosphere LIN SB RAS Doctor of geographical sciences Prof. T.V. Khodzher and PhD senior research I.I. Marinaite for GC-2010 Plus (Shimadzu) and chemicals kindly assigned, thank the academic of Russian Academy of Sciences Doctor of chemical sciences lead scientific worker Prof. M.A. Grachev and Doctor of biological sciences the Head of the Department of Ultrastructure of the Cell LIN SB RAS Prof. E.V. Likhoshvai for the equipment of Instrumental Center of Physical-Chemical Ultramicroanalysis of Collective Use of the LIN SB RAS kindly assigned. The authors express special thanks to the Head of the Laboratory of Chromatography LIN SB RAS PhD Docent Gorshkov A.G. for priceless help.

Funding

The investigation was carried out in the context of the federal task of the Ministry of the Science and High Education of the Russian Federation (projects of the Federal Agency of Science and Education no. 0345-2018-0001 “The investigation of evolution, ecological and molecular-biological aspects of silica-dependent chromista…”, no. 0345-2018-0008 “The estimation and prognosis of ecological status of Lake Baikal and adjacent territories…”, no. 0345-2018-0001 “Microorganisms of the deep-water biosphere…”, no. 0345-2018-0003 “Microbial and viral communities in biofilms of freshwater ecosystems…”) with the use of equipment of Instrumental Center of Physical-Chemical Ultramicroanalysis of Collective Use of the Limnological Institute of SB RAS (LIN SB RAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Nikonova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikonova, A.A., Shishlyannikov, S.M., Shishlyannikova, T.A. et al. Determination of Free and Esterified Fatty Acids in Hydrocoles of Different Content of Polyunsaturated Fatty Acids by Gas–liquid Chromatography. J Anal Chem 75, 1310–1321 (2020). https://doi.org/10.1134/S1061934820100093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934820100093

Keywords:

Navigation