Skip to main content
Log in

Quasi-Stationary Evaporation of a Small Liquid Droplet on a Flat Substrate: Analytical Solution in Bipolar Coordinates

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The study of a sessile liquid droplet evaporating on a flat surface is of great importance for physicochemical, technical, and medical applications. New analytical expressions have been proposed for the vapor density, evaporation flux density, and total evaporation flux per unit time for a slowly evaporating small axially symmetric droplet placed onto a flat substrate at an arbitrary value of the contact angle ranging from 0 to 180°. When deriving the expressions, the solution of the Laplace equation well-known in electrostatics for a flat wedge has been used. The solution has been transformed by the method of inversion on a sphere into a solution for a lens in bipolar coordinates. The new expressions are mathematically equivalent to previously-proposed equations in toroidal coordinates [Popov, Yu.O., Phys. Rev. E, 2005, vol. 71, p. 036313]; however, in the bipolar coordinates, the evaporation flux density has a simpler form of a single integral of a combination of elementary functions, thus being advantageous from the computational point of view. A new expression has also been proposed for the evaporation flux density in polar coordinates and graphic constructions have been performed for the dependences of the evaporation flux density on the polar angle at different values of the droplet contact angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Deegan, R.D., Bakajin, O., Dupont, T.F., Huber, G., Nagel, S.R., and Witten, T.A., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2000, vol. 62, p. 756.

    Article  CAS  Google Scholar 

  2. Popov, Yu.O., Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2005, vol. 71, p. 036313.

    Article  Google Scholar 

  3. Brutin, D. and Starov, V., Chem. Soc. Rev., 2018, vol. 47, p. 558.

    Article  CAS  Google Scholar 

  4. Schnall-Levin, M., Lauga, E., and Brenner, M.P., Langmuir, 2006, vol. 22, p. 4547.

    Article  CAS  Google Scholar 

  5. Zang, D., Tarafdar, S., Tarasevich, Yu.Yu., Choudhury, M.D., and Dutta, T., Phys. Rep., 2019, vol. 804, p. 1.

    Article  CAS  Google Scholar 

  6. Talbot, E.L., Yow, H.N., Yang, L., Berson, A., Biggs, S.R., and Bain, C.D., ACS Appl. Mater. Interfaces, 2015, vol. 7, p. 3782.

    Article  CAS  Google Scholar 

  7. Gambaryan-Roisman, T., Eng Math., 2012, vol. 73, p. 39.

    Article  CAS  Google Scholar 

  8. Hamadeh, L., Imran, S., Bencsik, M., Sharpe, G.R., Johnson, M.A., and Fairhurst, D.J., Sci. Rep., 2020, vol. 10, p. 3313.

    Article  CAS  Google Scholar 

  9. Lebedev-Stepanov, P.V., Buzoverya, M.E., Vlasov, K.O., and Potekhina, Yu.P., J. Bioinf. Genomics, 2018, vol. 4, p. 1.

    Google Scholar 

  10. Kolegov, K. and Barash, L., Adv. Colloid Interface Sci., 2020, vol. 285, p. 102271.

    Article  CAS  Google Scholar 

  11. Hoath, S.D. Fundamentals of Inkjet Printing. The Science of Inkjet and Droplets, Weinheim: Wiley, 2016.

  12. Kokornaczyk, M.O., Bodrova, N.B., and Baumgartner, S., Colloids Surf., B, 2021, vol. 208, p. 112092.

    Article  CAS  Google Scholar 

  13. Lebedev-Stepanov, P. and Vlasov, K., Colloids Surf., A, 2013, vol. 432, p. 132.

    Article  CAS  Google Scholar 

  14. Lebedev-Stepanov, P.V., Vvedenie v samoorganizatsiyu i samosborku ansamblei nanochastits (Introduction to Self-Organization and Self-Assembly of Nanoparticle Assemblies), Moscow: NRNU MEPhI, 2015.

  15. Lebedev, N.N. Special Functions and Their Applications, revised English ed. Prentice-Hall, Englewood Cliffs, NJ, 1965.

  16. Hu, H. and Larson, R.G.J., J. Phys. Chem. B, 2002, vol. 106, p. 1334.

    Article  CAS  Google Scholar 

  17. Picknett, R. and Bexon, J., J. Colloid Interface Sci., 1977, vol. 61, p. 336.

    Article  CAS  Google Scholar 

  18. Fuks, N.A., Isparenie i rost kapel’ v gazoobraznoi srede (Evaporation and Growth of Droplets in Gas Medium), Moscow: Izd. Akad. Nauk SSSR, 1958.

  19. Macdonald, H.M., Proc. London Math. Soc., 1895, vol. S1-26, no. 1, p. 156.

  20. Maxwell, J.C., A Treatise on Electricity and Magnetism, Oxford: Clarendon Press, 1873, vol. 1.

    Google Scholar 

  21. Grinberg, G.A., Izbrannye voprosy matematicheskoi teorii elektricheskikh i magnitnykh yavlenii (Selected Problems of Mathematical Theory of Electrical and Magnetic Phenomena), Moscow: Izd. Akad. Nauk SSSR, 1948.

  22. Lebedev-Stepanov, P., arXiv:2103.15582v3, 2021.

  23. Lebedev-Stepanov, P., in Proc. 5th Int. Conf. on Droplets, Darmstadt, 2021, p. 231.

  24. Prudnikov, A.P., Brychkov, Y.A., and Marichev, O.I., Integrals and Series, London: Gordon and Breach, 1986, vol. 3.

    Google Scholar 

  25. Vlasov, V.A., Int. J. Heat Mass Transfer, 2021, vol. 178, p. 121597.

    Article  Google Scholar 

  26. Hu, H. and Larson, R.G.J., J. Phys. Chem. B, 2006, vol. 110, p. 7090.

    Article  CAS  Google Scholar 

  27. Lebedev-Stepanov, P., Kobelev, A., and Efimov, S., in Proc. Int. Symp. “Interfacial Phenomena and Heat Transfer” (IPHT 2016), MATEC Web of Conferences, 2016, vol. 84, p. 22.

  28. Borodulin, Yu.V., Letushko, V.N., Nizovtsev, M.I., and Sterlyagov, A.N., Colloid J., 2021, vol. 83, p. 277.

    Article  CAS  Google Scholar 

  29. Terekhov, V.I. and Shishkin, N.E., Colloid J., 2021, vol. 83, p. 135.

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of the state order to the Federal Scientific Research Center “Crystallography and Photonics” of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Contributions

P.V. Lebedev-Stepanov—derivation of the main relations and asymptotics; O.A. Savenko—numerical calculations and construction of the plots.

Corresponding author

Correspondence to P. V. Lebedev-Stepanov.

Ethics declarations

The authors declare that they have no conflicts of interes-t.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savenko, O.A., Lebedev-Stepanov, P.V. Quasi-Stationary Evaporation of a Small Liquid Droplet on a Flat Substrate: Analytical Solution in Bipolar Coordinates. Colloid J 84, 312–320 (2022). https://doi.org/10.1134/S1061933X22030115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X22030115

Navigation