Skip to main content
Log in

Water vapor clustering in the field of Na+ cation inside a nanopore with hydrophilic walls. 2. Thermodynamic properties

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The bicanonical statistical ensemble method has been used to calculate at the molecular level the free energy, entropy, and work of hydration of single-charged sodium cation in a model planar nanopore with structureless hydrophilic walls. The calculations have been performed in terms of a detailed many-particle model of intermolecular interactions calibrated with respect to experimental data on the free energy and enthalpy of the initial reactions of attachment in water vapor. In contrast to chlorine anion, at initial stages of formation, the hydration shell of sodium cation has a loose chain structure, which is reflected in the character of the interaction with pore walls and the behavior of entropy. Under the conditions of weakly hydrophilic walls, the system loses its stability; however, the stability remains preserved in a pore with strongly hydrophilic walls. Hydrophilic walls stabilize the system and shift the onset of hydration toward lower vapor pressures by several orders of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gouveia, R.F., Costa, C.A.R., and Galembeck, F., J. Phys. Chem. C, 2008, vol. 112, p. 17193.

    Article  CAS  Google Scholar 

  2. New, K.H., Langford, S.C., and Dickinson, J.T., Appl. Surf. Sci., 2002, vols. 197–198, p. 83.

    Google Scholar 

  3. Emmer, I., Hajek, Z., and Repa, P., Surf. Sci., 1985, vol. 162, p. 303.

    Article  CAS  Google Scholar 

  4. Morag, J., Dishon, M., and Sivan, U., Langmuir, 2013, vol. 29, p. 6317.

    Article  CAS  Google Scholar 

  5. Peschel, G. and Ludwig, P., Ber. Bunsen-Ges. Phys. Chem., 1987, vol. 91, p. 536.

    Article  CAS  Google Scholar 

  6. Kanduc, M., Schneck, E., and Netz, R.R., Chem. Phys. Lett., 2014, vols. 610–611, p. 375.

    Article  Google Scholar 

  7. Paunov, V.N., Dimova, R.I., Kralchevsky, P.A., Broze, G., and Mehreteab, A., J. Colloid Interface Sci., 1996, vol. 182, p. 239.

    Article  CAS  Google Scholar 

  8. Malani, A., Murad, S., and Ayappa, K.G., Mol. Simul., 2010, vol. 36, p. 579.

    Article  CAS  Google Scholar 

  9. Scatena, L.F. and Richmond, G.L., Chem. Phys. Lett., 2004, vol. 383, p. 491.

    Article  CAS  Google Scholar 

  10. Shevkunov, S.V., Colloid J., 2000, vol. 62, p. 509.

    CAS  Google Scholar 

  11. Shevkunov, S.V., Colloid J., 2002, vol. 64, p. 243.

    Article  CAS  Google Scholar 

  12. Shevkunov, S.V., Russ. J. Gen. Chem., 2002, vol. 72, p. 685.

    Article  CAS  Google Scholar 

  13. Lukyanov, S.I., Zidi, Z.S., and Shevkunov, S.V., J. Mol. Struct. (THEOCHEM), 2003, vol. 623, p. 221.

    Article  CAS  Google Scholar 

  14. Shevkunov, S.V., Russ. J. Gen. Chem., 2004, vol. 74, p. 1471.

    Article  CAS  Google Scholar 

  15. Shevkunov, S.V., Russ. J. Phys. Chem., 2004, vol. 78, p. 1590.

    Google Scholar 

  16. Shevkunov, S.V., Lukyanov, S.I., Leyssale, J.-M., and Millot, C., Chem. Phys., 2005, vol. 310, p. 97.

    Article  CAS  Google Scholar 

  17. Shevkunov, S.V., Colloid J., 2009, vol. 71, p. 406.

    Article  CAS  Google Scholar 

  18. Shevkunov, S.V., Colloid J., 2011, vol. 73, p. 275.

    Article  CAS  Google Scholar 

  19. Shevkunov, S.V., Russ. J. Phys. Chem., 2011, vol. 85, p. 1584.

    Article  CAS  Google Scholar 

  20. Gel’man, L.A., Grishina, N.P., Plaude, N.O., Tovbin, M.V., and Chesha, I.I., Tr. Tsentr. Aerolog. Observatorii, Moscow: Gidrometeoizdat, 1987, no. 164, p. 41.

    Google Scholar 

  21. Sidorov, A.I., Khvan, S.B., and Zmitrovich, V.Yu., Tr. Vses. seminara “Aktivnye vozdeistviya na gradovye protsessy i perspektivy usovershenstvovaniya l’doobrazuyushchikh reagentov dlya praktiki aktivnykh vozdeistvii” (All-Union Workshop “Active Influence on Hail Processes and Prospects of Refining Ice-Forming Reagents for Practical Use”), Moscow: Gidrometeoizdat, 1991, p. 215.

    Google Scholar 

  22. Shevkunov, S.V., Zh. Eksp. Teor. Fiz., 2009, vol. 135, p. 510.

    Google Scholar 

  23. Shevkunov, S.V., Zh. Eksp. Teor. Fiz., 2009, vol. 136, p. 282.

    Google Scholar 

  24. Shevkunov, S.V., Dokl. Akad. Nauk, 2010, vol. 433, p. 761.

    Google Scholar 

  25. Shevkunov, S.V., Colloid J., 2007, vol. 69, p. 360.

    Article  CAS  Google Scholar 

  26. Shevkunov, S.V., Colloid J., 2007, vol. 69, p. 378.

    Article  CAS  Google Scholar 

  27. Hagymassy, J., Brunauer, S., and Mikhail, R.Sh., J. Colloid Interface Sci., 1969, vol. 29, p. 485.

    Article  CAS  Google Scholar 

  28. Odler, I., Hagymassy, J., Yudenfreund, M., Hanna, K.M., and Brunauer, S., J. Colloid Interface Sci., 1972, vol. 38, p. 265.

    Article  CAS  Google Scholar 

  29. Alvarez-Herrero, A., Guerrero, H., Bernabeu, E., and Levy, D., Appl. Opt., 2002, vol. 41, p. 6692.

    Article  CAS  Google Scholar 

  30. Shevkunov, S.V., Colloid J., 2014, vol. 76, p. 221.

    Article  CAS  Google Scholar 

  31. Shevkunov, S.V., High Temp., 2015, vol. 53, p. 259.

    Article  CAS  Google Scholar 

  32. Shevkunov, S.V., Colloid J., 2014, vol. 76, p. 240.

    Article  CAS  Google Scholar 

  33. Shevkunov, S.V., Colloid J., 2014, vol. 76, p. 490.

    Article  CAS  Google Scholar 

  34. Shevkunov, S.V., Russ. J. Electrochem., 2014, vol. 50, p. 1118.

    Article  CAS  Google Scholar 

  35. Shevkunov, S.V., Russ. J. Electrochem., 2014, vol. 50, p. 1127.

    Article  CAS  Google Scholar 

  36. Shevkunov, S.V., Colloid J., 2016, vol. 78, p. 121.

    Article  CAS  Google Scholar 

  37. Shevkunov, S.V., Colloid J., 2016, vol. 78, p. 137.

    Article  CAS  Google Scholar 

  38. Shevkunov, S.V., Zh. Fiz. Khim., 2014, vol. 88, p. 1556.

    Google Scholar 

  39. Shevkunov, S.V., Russ. J. Phys. Chem., 2014, vol. 88, p. 1744.

    Article  CAS  Google Scholar 

  40. Arshadi, M., Yamdagni, R., and Kebarle, P., J. Phys. Chem., 1970, vol. 74, p. 1466.

    Article  Google Scholar 

  41. Hiroaka, K., Mizuse, S., and Yamade, S., J. Phys. Chem., 1988, vol. 92, p. 3943.

    Article  Google Scholar 

  42. Shevkunov, S.V., Kolloidn. Zh., 1983, vol. 45, p. 1019.

    Google Scholar 

  43. Shevkunov, S.V., Colloid J., 2005, vol. 67, p. 509.

    Article  CAS  Google Scholar 

  44. Lukyanov, S.I., Zidi, Z.S., and Shevkunov, S.V., Chem. Phys., 2007, vol. 332, p. 188.

    Article  CAS  Google Scholar 

  45. Lukyanov, S.I., Zidi, Z.S., and Shevkunov, S.V., Fluid Phase Equilib., 2005, vol. 233, p. 34.

    Article  CAS  Google Scholar 

  46. Shevkunov, S.V., Colloid J., 2004, vol. 66, p. 230.

    Article  CAS  Google Scholar 

  47. Shevkunov, S.V., Colloid J., 2014, vol. 76, p. 753.

    Article  CAS  Google Scholar 

  48. Shevkunov, S.V., Russ. J. Electrochem., 2013, vol. 49, p. 228.

    Article  CAS  Google Scholar 

  49. Shevkunov, S.V., Russ. J. Electrochem., 2013, vol. 49, p. 238.

    Article  CAS  Google Scholar 

  50. Shevkunov, S.V., High Temp., 2012, vol. 50, p. 255.

    Article  CAS  Google Scholar 

  51. Shevkunov, S.V., Colloid J., 2011, vol. 73, p. 135.

    Article  CAS  Google Scholar 

  52. Shevkunov, S.V., Colloid J., 2010, vol. 72, p. 93.

    Article  CAS  Google Scholar 

  53. Shevkunov, S.V., Colloid J., 2010, vol. 72, p. 107.

    Article  CAS  Google Scholar 

  54. Hill, T.L., Statistical Mechanics. Principles and Selected Applications, New York McGraw-Hill, 1956.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Shevkunov.

Additional information

Original Russian Text © S.V. Shevkunov, 2016, published in Kolloidnyi Zhurnal, 2016, Vol. 78, No. 2, pp. 240–251.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevkunov, S.V. Water vapor clustering in the field of Na+ cation inside a nanopore with hydrophilic walls. 2. Thermodynamic properties. Colloid J 78, 257–268 (2016). https://doi.org/10.1134/S1061933X16020137

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X16020137

Keywords

Navigation