Skip to main content
Log in

Trapped modes and resonances for water waves over a slightly perturbed bottom

  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

We construct exact solutions describing trapped water waves over an underwater ridge of small height in the shallow water approximation and in the complete formulation. Resonances (antibound states) in the case of an underwater trench are also constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover Publ, Inc., New York, 1970).

    Google Scholar 

  2. S. Yu. Dobrokhotov, “Maslov’s Methods in the Linearized Theory of Gravitational Waves on the Fluid Surface,” Dokl. Akad. Nauk SSSR 269(1), 76–80 (1983) [Sov. Phys. Dokl., 28, 189–191 (1983).

    MathSciNet  Google Scholar 

  3. S. Yu. Dobrokhotov, “Asymptotic Behavior of Water Surface Waves Trapped by Shores and Irregularities of the Bottom Relief,” Dokl. Akad. Nauk SSSR 289(3), 575–579 (1986) [Soviet Phys. Dokl. 31 (7), 537–539 (1986)].

    MathSciNet  Google Scholar 

  4. R. Gadyl’shin, “Local Perturbations of the Schrödinger Operator on the Axis,” Theor. Math. Phys. 132, 976–982 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  5. D. S. Kuznetsov, “A Spectral Perturbation Problem and Its Applications to Waves above an Underwater ridge,” Siberian Math. J., 42, 668–684 (2001).

    Article  MathSciNet  Google Scholar 

  6. L. D. Landau, E. M. Lifshitz, “Quantum Mechanics. Non-Relativistic Theory,” Pergamon (1958).

  7. M. A. Lavrentiev, and B. V. Chabat, “Effets Hydrodynamiques et Modèles Mathématiques,” (Mir, Moscow, 1972).

    Google Scholar 

  8. D. B. Nicholls and M. Taber, “Joint Analyticity and Analytic Continuation of Dirichlet-Neumann Operators on Doubly Perturbed Domains,” J. Math. Fluid Mech., 10, 238–271 (2008).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. L. V. Ovsjannikov [Ovsyannikov], “Cauchy Problem in a Scale of Banach Spaces and Its Application to the Shallow Water Theory Justification,” in: Applications of Methods of Functional Analysis to Problems in Mechanics, P. Germain and B. Nayroles (Editors), Lect. Notes Math., 503 (Springer, Berlin-New York, 1976), pp. 426–437.

    Chapter  Google Scholar 

  10. L. V. Ovsyannikov, N. I. Makarenko, V. I. Nalimov, V, Yu, Lyapidevskii, P. I. Plotnikov, I. V. Sturova, V. I. Bukreev, and V. A. Vladimirov, “Nonlinear Problems in the Theory of Surface and Internal Waves” (Nauka Sibirsk. Otdel., Novosibirsk, 1985) (in Russian).

    Google Scholar 

  11. J. A. Rodriguez Ceballos and P. Zhevandrov, “Comparison between the Discrete and Continuous Schrödinger Operators with a Small Potential Well,” in Numerical Modelling of Coupled Phenomena in Engineering and Science: Practical Uses and Examples, M.C. Suárez Arriaga, J. Bundschuh, F.J. Domínguez-Mota (Editors) (Taylor & Francis, 2008), pp. 71–88.

  12. B. Simon, “The Bound State of Weakly Coupled Schrödinger Operators in One and Two Dimensions,” Ann. Phys., 97, 279–288 (1976).

    Article  MATH  ADS  Google Scholar 

  13. B. Simon, “Resonances in One Dimension and Fredholm Determinants,” J. Funct. Anal., 178, 396–420 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  14. I. Stakgold, “Boundary Value Problems of Mathematical Physics” (Macmillan Company, Vol. II, New York, 1968).

  15. E. C. Titchmarsh, The Theory of Functions (Oxford University Press, 1939).

  16. B. R. Vainberg, Asymptotic Methods in Equations of Mathematical Physics (Moskov. Gos. Univ., Moscow, 1982; Gordon & Breach Science Publishers, New York, 1989).

    MATH  Google Scholar 

  17. V. S. Vladimirov, Equations of Mathematical Physics (Mir Publishers, Moscow, 1984).

    Google Scholar 

  18. P. Zhevandrov and A. Merzon, “Asymptotics of Eigenfunctions in Shallow Potential Wells and Related Problems,” Amer. Math. Soc. Trans. (2) 208, 235–284 (2003).

    MathSciNet  Google Scholar 

  19. M. Zworski, “Resonances in Physics and Geometry,” Notices Amer. Math. Soc. 46(3), 319–328 (1999).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Romero Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romero Rodríguez, M.I., Zhevandrov, P. Trapped modes and resonances for water waves over a slightly perturbed bottom. Russ. J. Math. Phys. 17, 307–327 (2010). https://doi.org/10.1134/S1061920810030052

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061920810030052

Keywords

Navigation