Skip to main content
Log in

Titanium plasma spectroscopy studies under double pulse laser excitation

  • Interaction of Laser Radiation with Matter
  • Published:
Laser Physics

Abstract

Laser-induced breakdown spectroscopy (LIBS) was applied for parametric studies of titanium (Ti) plasma using single and double pulsed laser excitation scheme. Here a pulsed Nd:YAG laser was employed for generation of laser produced plasma from solid Ti target at ambient pressure. Several ionized titanium lines were recorded in the 312–334 nm UV region. The temporal evolution of plasma parameters such as excitation temperature and electron number density was evaluated. The effect of incident laser irradiance, position of the laser beam focal point with respect to the surface of illumination, single and double laser pulse effect on plasma parameters were also investigated. This study contributes to a better understanding of the LIBS plasma dynamics of the double laser pulse effect on the temporal evolution of various Ti emission lines, the detection sensitivity and the optimal dynamics of plasma for ionized states of Ti. The results demonstrate a faster decay of the continuum and spectral lines and a shorter plasma life time for the double pulse excitation scheme as compared with single laser pulse excitation. For double pulse excitation technique, the emissions of Ti lines intensities are enhanced by a factor of five which could help in the improvement of analytical performance of LIBS technique. In addition, this study proved that to avoid inhomogeneous effects in the laser produced plasma under high laser intensities, short delay times between the incident laser pulse and ICCD gate are required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Roos, J. P. Celis, E. Vancoille, S. Boelens, F. Jungbult, J. Ebberink, and H. Homberg, Thin Solid Films 547, 193 (1990).

    Google Scholar 

  2. A. Chen, J. T. Scheure, C. Ritter, R.B. Alexander, and J. R. Conrad, J. Appl. Phys. 70, 6757 (1991).

    Article  ADS  Google Scholar 

  3. J. Mizera, R. Y. Fillit, and T. Wierzchon, J. Mater. Sci. Lett. 17, 1291 (1998); K. T. Rie and T. H. Lampe, Mater. Sci. Eng. 69, 473 (1985).

    Article  Google Scholar 

  4. A. De Giacomo, Spectrochim. Acta B 58(1), 71 (2003).

    Article  ADS  Google Scholar 

  5. A. De Giacomo, V. A. Shakhatov, and O. De Pascale, Spectrochim. Acta B 56, 71 (2001).

    Google Scholar 

  6. A. De Giacomo, M. Dell’Aglio, A. Santagata, and R. Teghil, Spectrochim. Acta B 60, 935 (2005).

    Article  ADS  Google Scholar 

  7. M. Capitelli, A. Casavola, G. Colonna, and A. De Giacomo, Spectrochim. Acta B 59, 271 (2004).

    Article  ADS  Google Scholar 

  8. Laser Induced Plasma and Applications, Ed. by L. J. Radziemski and D. A. Cremers (Marcel Dekker, New York, 1989).

    Google Scholar 

  9. M. Capitelli, F. Capitelli and A. Eletskii, Spectrochim. Acta B 55, 559 (2000).

    Article  ADS  Google Scholar 

  10. S. Amoruso, Appl. Phys. A 69, 323 (1999).

    Article  ADS  Google Scholar 

  11. S. Amoruso, R. Bruzzese, N. Spinelli and R. Velotta, J. Phys. B: At. Mol. Opt. Phys. 32, R131 (1991).

    Article  Google Scholar 

  12. http://www.bigskylaser.com/brilliantseries.html.

  13. http://www.roperscientific.de/datasheets/PurgedSP300.pdf.

  14. NIST Atomic Spectra Database [http://www.nist.gov].

  15. M. Borghesi, A. J. Mackinnon, R. Gaillard, O. Willi, and D. Riley, Phys. Rev. E 60, 7374 (1999).

    Article  ADS  Google Scholar 

  16. M. A. Gondal and T. Hussain, Talanta 71, 73 (2007).

    Article  Google Scholar 

  17. M. A. Gondal and T. Hussain, Energy Sources A 30, 441 (2008).

    Article  Google Scholar 

  18. M. A. Gondal, T. Hussain, Z. H. Yamani, and M. A. Baig, Talanta 69, 1072 (2007).

    Article  Google Scholar 

  19. V. Piñon, C. Fotakis, G. Nicolas, and D. Anglos, Spectrochim. Acta B 63, 1006 (2008).

    Article  ADS  Google Scholar 

  20. Y. B. Zel’dovitch and Y. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic, New York, 1966).

    Google Scholar 

  21. P. W. J. M. Boumans, “Excitation Phenomena and Temperature Measurements,” in Theory of Spectrochemical Excitation, Ed. by P. W. J. M. Boumans (Hilger and Watts, London, 1966), Ch. 6, p. 92.

    Google Scholar 

  22. W. Lochte-Holtgreven, “Evaluation of Plasma Parameters,” in Plasma Diagnostics, Ed. by W. Lochte-Holtgreven (Wiley Intersci., New York, 1968), Ch. 3, p. 135.

    Google Scholar 

  23. Principles of Laser Plasmas, Ed. by G. Bekefi (Wiley, New York, 1976), Ch. 13, p. 549.

    Google Scholar 

  24. A. A. I. Khalil, Surf. Coat. Technol. 200, 774 (2005).

    Article  Google Scholar 

  25. A. A. I. Khalil and N. Sreenivasan, Laser Phys. Lett. 2, 445 (2005).

    Article  Google Scholar 

  26. A. A. I. Khalil and M. C. Richardson, Laser Phys. Lett. 3, 137 (2006).

    Article  Google Scholar 

  27. H. Hora, Plasmas at High Temperature and Density (Springer, Heidelberg, 1991).

    Google Scholar 

  28. M. Borghesi, A. J. Mackinnon, R. Gaillard, O. Willi, and D. Riley, Phys. Rev. E 60, 7374 (1999).

    Article  ADS  Google Scholar 

  29. H. R. Griem, Spectral Line Broadening by Plasmas (Academic, New York, 1974).

    Google Scholar 

  30. A. A. I. Khalil, M. Richardson, C. Barnett, and L. Johnson, J. Appl. Spectrosc. 73, 654 (2006).

    Article  Google Scholar 

  31. C. Lopez-Moreno, S. Palanco, and J. J. Laserna, J. Anal. At. Spectrom. 20, 1275 (2005).

    Article  Google Scholar 

  32. M. Corsi, G. Cristoforetti, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, Appl. Geochem. 21, 748 (2006).

    Article  Google Scholar 

  33. E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, M. Mueller, U. Panne, and I. Gornushkin, Spectrochim. Acta Part B 62, 1287 (2007).

    Article  ADS  Google Scholar 

  34. S. Maurmann, V. A. Kadetov, A. A. I. Khalil, H.-J. Kunze, and U. Czarnetzki, J. Phys. D 37, 2677 (2004).

    Article  ADS  Google Scholar 

  35. G. Cristoforetti, Spectrochim. Acta B 64, 26 (2009).

    Article  Google Scholar 

  36. J. Ashkenazy, R. Kipper, and M. Caner, Phys. Rev. A 43, 5568 (1991).

    Article  ADS  Google Scholar 

  37. H. R. Griem, Spectral Line Broadening by Plasmas (Academic, New York, 1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. I. Khalil.

Additional information

Original Russian Text © Astro, Ltd., 2009.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khalil, A.A.I., Richardson, M., Johnson, L. et al. Titanium plasma spectroscopy studies under double pulse laser excitation. Laser Phys. 19, 1981–1992 (2009). https://doi.org/10.1134/S1054660X09190116

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X09190116

PACS numbers

Navigation