Skip to main content
Log in

Laser spectroscopy of gas in scattering media at scales ranging from kilometers to millimeters

  • Quantum Optics, Laser Physics, and Spectroscopy
  • Published:
Laser Physics

Abstract

Free gases are characterized by their narrow line width, and they can conveniently be studied by laser spectroscopy. The present paper discusses the monitoring of such ambient pressure gases, which are dispersed in scattering media such as aerosol-laden atmospheres, solids, or liquids. Atmospheric work basically constitutes the well-known field of differential absorption lidar (DIAL), while the study of free gas in solids and liquids was initiated more recently under the name of GASMAS (GAs in Scattering Media Absorption Spectroscopy). We discuss the connections between the two techniques, which are extensively used in our labortory. Thus, we span the field from trace-gas mapping of gases in the lower atmosphere to gas studies in construction materials, food products, and the human body. We show that the basic ideas are very similar, while the spatial and temporal scales vary greatly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Svanberg, “Electromagnetic Radiation in Scattering Media-Spectroscopic Aspects,” in Progress in Nonlinear Science, Ed. by A. G. Litvak (Univ. of Nizhny Novgorod, Nizhni Novgorod, 2002), Vol. 2, p. 429.

    Google Scholar 

  2. S. Svanberg, “Some Applications of Ultrashort Laser Pulses in Biology and Medicine,” Meas. Sci. Technol. 12, 1777 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  3. R. Grönlund, L. Persson, M. Sjöholm, et al., “Studies of Free Gas in Scattering Media at Micro-and Macroscopic Scales,” Proceedings of the International Symposium on Biophotonics, Nanophotonics and Metamaterials, Hangzhou, China, 2006, p. 51.

  4. S. Andersson-Engels, R. Berg, S. Svanberg, and O. Jarlman, “Time-Resolved Transillumination for Medical Diagnostics,” Opt. Lett. 15, 1179 (1990).

    Article  ADS  Google Scholar 

  5. R. Berg, S. Andersson-Engels, and S. Svanberg, “Time-Resolved Transillumination Imaging,” in Medical Optical Tomography, Functional Imaging and Monitoring, Ed. by G. Müller et al. (SPIE, Bellingham, 1993), SPIE Institute Series, Vol. 11, p. 397.

    Google Scholar 

  6. M. S. Patterson, B. Chance, and B. C. Wilson, “Time Resolved Reflectance and Transmittance for the Non-Invasive Measurement of Optical Properties,” Appl. Opt. 28, 2331 (1989).

    ADS  Google Scholar 

  7. C. af Klinteberg, A. Pifferi, S. Andersson-Engels, et al., “In Vivo Absorption Spectroscopy of Tumor Sensitizers with Femtosecond White Light,” Appl. Opt. 44, 2213 (2005).

    Article  ADS  Google Scholar 

  8. T. Svensson, J. Swartling, P. Taroni, et al., “Characterization of Normal Breast Tissue Heterogeneity Using Time-Resolved Near-Infrared Spectroscopy,” Phys. Med. Biol. 50, 2559 (2005).

    Article  Google Scholar 

  9. J. Johansson, S. Folestad, M. Josefson, et al., “Time-Resolved NIR/VIS Spectroscopy for Analysis of Solids: Pharmaceutical Tablets,” Appl. Spectrosc. 56, 725 (2002).

    Article  ADS  Google Scholar 

  10. Ch. Abrahamsson, T. Svensson, S. Svanberg, et al., “Time and Wavelength Resolved Spectroscopy of Turbid Media Using Light Continuum Generated in a Crystal Fibre,” Opt. Express 12, 4103 (2004).

    Article  ADS  Google Scholar 

  11. M. Sjöholm, G. Somesfalean, J. Alnis, et al., “Analysis of Gas Dispersed in Scattering Media,” Opt. Lett. 26, 16 (2001).

    ADS  Google Scholar 

  12. G. Fioccio and L. D. Smullin, “Detection of Scattering Layers in the Upper Atmosphere (60–140 km) by Optical Radars,” Nature 199, 1275 (1963).

    Article  ADS  Google Scholar 

  13. Laser Remote Sensing, Ed. by T. Fujii and T. Fukuchi (CRC, Fla, 2005).

    Google Scholar 

  14. S. Svanberg, “LIDAR,” in Springer Handbook of Lasers and Optics Springer, Ed. by F. Träger (Springer, New York, 2007).

    Google Scholar 

  15. R. M. Shotland, “Some Observation of the Vertical Profile of Water Vapour by a Laser Optical Radar,” Proceedings of the 4th Symposium on Remote Sensitive Environment, Univ. Mich. Ann Arbor, 1966, p. 273.

  16. S. Svanberg, “Differential Absorption Lidar,” in Air Pollution Monitoring with Optical Techniques, Ed. by M. Sigrist (Wiley, New York, 1993), Chap. 3.

    Google Scholar 

  17. K. W. Rothe, U. Brinkman, and H. Walther, “Applications of Tuneable Dye Lasers to Air Pollution Detection: Measurements of Atmospheric NO2 Concentrations by Differential Absorption,” Appl. Phys. 3, 115 (1974); Appl. Phys. 4, 181 (1974).

    Article  ADS  Google Scholar 

  18. W. B. Grant, R. D. Hake, Jr., E. M. Liston, et al., “Calibrated Remote Measurements of NO2 Using Differential Absorption Backscattering Technique,” Appl. Phys. Lett. 24, 550 (1974).

    Article  ADS  Google Scholar 

  19. 12th International Workshop on Lidar Multiple Scattering Experiments, Ed. by C. Werner, U. Oppel, and T. Rother (SPIE, Bellingham, WA, 2003).

    Google Scholar 

  20. S. Svanberg, “Environmental and Medical Applications of Photonic Interactions,” Phys. Scr., T 110, 39 (2004).

    Article  ADS  Google Scholar 

  21. S. Svanberg, Multi-Spectral Imaging—From Astronomy to Microscopy—from Radiowaves to Gammarays (2007) (to appear).

  22. P. Weibring, H. Edner, and S. Svanberg, “Versatile Mobile Lidar System for Environmental Monitoring,” Appl. Opt. 42, 3583 (2003).

    ADS  Google Scholar 

  23. R. Grönlund, M. Sjöholm, P. Weibring, et al., “Elemental Mercury Emissions from Chlor-Alkali Plants Measured by Lidar Techniques,” Atmos. Environ. 39, 7474 (2005).

    Article  Google Scholar 

  24. G. Somesfalean, M. Sjöholm, J. Alnis, et al., “Concentration Measurement of Gas Embedded in Scattering Media by Employing Absorption and Time-Resolved Laser Spectroscopy,” Appl. Opt. 41, 3538 (2002).

    ADS  Google Scholar 

  25. L. Persson, B. Andersson, M. Sjöholm, and S. Svanberg, “Studies of Gas Exchange in Fruits Using Laser Spectroscopic Techniques,” Proceedings of FRUITIC 05, Information and Technology for Sustainable Fruit and Vegetable Production, Montpellier, France, 2005, pp. 543–552.

  26. L. Persson, H. Gao, M. Sjöholm, and S. Svanberg, “Diode Laser Absorption Spectroscopy for Studies of Gas Exchange in Fruits,” Opt. Lasers Eng. 44, 688 (2006).

    Article  Google Scholar 

  27. M. Andersson, L. Persson, M. Sjöholm, and S. Svanberg, “Spectroscopic Studies of Wood-Drying Processes,” Opt. Express 14, 3641 (2006).

    Article  ADS  Google Scholar 

  28. G. Somesfalean, J. Alnis, U. Gustafsson, and S. Svanberg, “Long-Path Monitoring of NO2 with a 635 nm Diode Laser Using Frequency Modulation Spectroscopy,” Appl. Opt. 44, 5148 (2005).

    Article  ADS  Google Scholar 

  29. G. Somesfalean, M. Sjöholm, L. Persson, et al., “Temporal Norrelation Scheme for Spectroscopic Gas Analysis Using Multimode Diode Lasers,” Appl. Phys. Lett. 86, 184 102 (2005).

    Google Scholar 

  30. P. Weibring, J. Swartling, H. Edner, et al., “Optical Monitoring of Volcanic Sulphur Dioxide Emissions-Comparison between Four Different Remote Sensing Techniques,” Opt. Lasers Eng. 37, 267 (2002).

    Article  Google Scholar 

  31. H. Edner, G. W. Faris, A. Sunesson, et al., “Lidar Search for Atomic Mercury in Icelandic Geothermal Fields,” J. Geophys. Res. 96, 2977 (1991).

    ADS  Google Scholar 

  32. M. Sjöholm, L. Persson and S. Svanberg, “Gas Diffusion Measurements in Porous Media by the Use of a Laser Spectroscopic Technique” (in preparation).

  33. L. Persson, K. Svanberg, and S. Svanberg, “On the Potential of Human Sinus Cavity Diagnostics Using Diode Laser Gas Spectroscopy,” Appl. Phys. B 82, 313 (2006).

    Article  ADS  Google Scholar 

  34. L. Persson, M. Andersson, T. Svensson, et al., “Non-Intrusive Optical Study of Gas and its Exchange in Human Maxillary Sinuses,” Proc. ECBO, Paper Number: 6628-3 (2007).

  35. T. Svensson, L. Persson, M. Andersson, et al., “Non-Invasive Characterization of Pharmaceutical Solids Using Diode Laser Oxygen Spectroscopy,” Appl. Spectroscopy (in press).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Text © Astro, Ltd., 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersson, M., Grönlund, R., Persson, L. et al. Laser spectroscopy of gas in scattering media at scales ranging from kilometers to millimeters. Laser Phys. 17, 893–902 (2007). https://doi.org/10.1134/S1054660X07070018

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X07070018

PACS numbers

Navigation