Skip to main content
Log in

Abstract

Layered composite materials based on niobium and cermet are produced via the self-propagating high-temperature synthesis of preliminarily structured samples using metal foils (Ti, Nb, Ta, Ni) and reaction tapes (Ti + 1.7B) and (5Ti + 3Si). The reaction tapes for synthesis are produced by rolling powder mixtures. The microstructure, and elemental and phase compositions of the synthesized multilayer composite materials are studied by scanning electron microscopy and X-ray phase analysis. Particular attention is paid to the formation of intermediate layers and surface modification occurring during combustion. The strength characteristics of the synthesized materials are determined according to the three-point loading scheme at temperatures of 1100°C. Analysis of the obtained materials shows that joining in the combustion mode of metal foils and reaction tapes is provided due to reaction diffusion, mutual impregnation, and chemical reactions occurring in the reaction tapes and on the surface of the metal foils. The formation of thin intermediate layers in the form of cermet and eutectic solutions provides the synthesized multilayer materials with good strength properties up to 87 MPa at 1100°C. These results are of interest for the development of structural materials operating under extreme conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. J. C. Zhao and J. H. Westbrook, MRS Bull. 28, 622 (2003). https://doi.org/10.1557/mrs2003.189

    Article  CAS  Google Scholar 

  2. B. Kong, L. Jia, H. Zhang, J. Sha, S. Shi, and K. Guan, Int. J. Refract. Metals Hard Mater. 58, 84 (2016). https://doi.org/10.1016/j.ijrmhm.2016.04.004

    Article  CAS  Google Scholar 

  3. C. Pierre and Kh. Tasadduq, Aerospace Sci. Technol. 3 (8), 513 (1999). https://doi.org/10.1016/S1270-9638(99)00108-X

    Article  Google Scholar 

  4. V. M. Kiiko, V. P. Korzhov, V. N. Kurlov, and K. A. Khvostunkov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 14 (6), 1126 (2020). https://www.doi.org/10.1134/S1027451020060075

    Article  CAS  Google Scholar 

  5. P. Tsakiropoulos, Prog. Mater. Sci. 123, 100714 (2022). https://www.doi.org/10.1016/j.pmatsci.2020.100714

    Article  CAS  Google Scholar 

  6. A. J. Deardo, Int. Mater. Rev. 48 (6), 371 (2003). https://doi.org/10.1179/095066003225008833

    Article  CAS  Google Scholar 

  7. X. Zheng, R. Bai, X. Cai, R. Bai, M. Xia, F. Wang, H. Liu, and H. Wang, Mater. China 33 (9), 586 (2014). https://www.doi.org/10.7502/j.issn.1674-3962.2014.09.07

  8. V. T. Le, N. S. Ha, and N. S. Goo, Compos. B 226, 109301 (2021). https://doi.org/10.1016/j.compositesb.2021.109301

    Article  Google Scholar 

  9. A. Saurabh, Ch. M. Meghana, P. K. Singh, and P. Ch. Verma, Mater. Today: Proc. 56, 412 (2022). https://doi.org/10.1016/j.matpr.2022.01.268

    Article  CAS  Google Scholar 

  10. J. C. Wang, Y. J. Liu, P. Qin, S. X. Liang, T. B. Sercombe, and L. C. Zhang, Mater. Sci. Eng., A 760, 214 (2019). https://doi.org/10.1016/j.msea.2019.06.001

    Article  CAS  Google Scholar 

  11. U. Gramberg, M. Renner, and H. Diekmann, Mater. Corros. 46 (12), 689 (1995). https://doi.org/10.1002/maco.19950461206

    Article  CAS  Google Scholar 

  12. Sh. Li, L. Xiao, S. Liu, Y. Zhang, J. Xu, X. Zhou, G. Zhao, Zh. Cai, and X. Zhao, J. Eur. Ceram. Soc. 42, 4866 (2022). https://doi.org/10.1016/j.jeurceramsoc.2022.05.009

    Article  CAS  Google Scholar 

  13. X.Cai, D. Wang, Y. Wang, and Zh. Yang, J. Manuf. Proc. 64, 1349 (2021). https://doi.org/10.1016/j.jmapro.2021.02.057

    Article  Google Scholar 

  14. W. Wunderlich, Metals 4, 410 (2014). https://www.doi.org/10.3390/met4030410

    Article  Google Scholar 

  15. O. K. Kamynina, S. G. Vadchenko, A. S. Shchukin, and I. D. Kovalev, Int. J. Self-Propag. High-Temp. Synth. 25, 238 (2016). https://doi.org/10.3103/S106138621604004X

    Article  CAS  Google Scholar 

  16. O. K. Kamynina, S. G. Vadchenko, and A. S. Shchukin, Russ. J. Non-Ferrous Met. 60, 422 (2019). https://doi.org/10.3103/S1067821219040035

    Article  Google Scholar 

  17. Y. Ye and D. Mu, J. Eur. Ceram. Soc. 34 (10), 2177 (2014). https://doi.org/10.1016/j.jeurceramsoc.2014.02.018

    Article  CAS  Google Scholar 

  18. X.-J. Pei, J.-H. Huang, J.-G. Zhang, Sh. Wei, G.-B. Lin, and H.-Y. Liu, Mater. Lett. 60, 2240 (2006). https://www.doi.org/10.1016/j.matlet.2005.12.138

    Article  CAS  Google Scholar 

  19. D. Reyes, V. Malard, S. Drawin, A. Couret, J.-P. Monchoux, Intermetallics 144, 107509 (2022). https://www.doi.org/10.1016/j.intermet.2022.107509

    Article  CAS  Google Scholar 

  20. S. G. Vadchenko, Combust. Explos. Shock Waves 55, 177 (2019). https://doi.org/10.1134/S0010508219020060

    Article  Google Scholar 

  21. E. Marchenko, Yu. Yasenchuk, G. Baigonakova, S. Gunther, M. Yuzhakov, S. Zenkin, A. Potekaev, and K. Dubovikov, Surf. Coat. Technol. 388, 125543 (2020). https://doi.org/10.1016/j.surfcoat.2020.125543

    Article  CAS  Google Scholar 

  22. S. Vorotilo, A. Y. Potanin, I. V. Iatsyuk, and E. A. Levashov, Adv. Eng. Mater. 20, 1800200 (2018). https://doi.org/10.1002/adem.201800200

    Article  CAS  Google Scholar 

  23. O. K. Kamynina, S. G. Vadchenko, N. F. Shkodich, and I. D. Kovalev, Metals 12 (1), 38 (2022). https://doi.org/10.3390/met12010038

    Article  CAS  Google Scholar 

  24. S. G. Vadchenko, D. S. Suvorov, O. K. Kamynina, and N. I. Mukhina, Combust. Explos. Shock Waves 57 (6), 672 (2021). https://doi.org/10.1134/S0010508221060058

    Article  Google Scholar 

  25. R. Liu, X. S. Hou, S. Y. Yang, C. Chen, Y. R. Mao, S. Wang, Z. H. Zhong, Z. Zhang, P. Lu, and Y. C. Wu, Mater. Charact. 172, 110875 (2021). https://doi.org/10.1016/j.matchar.2021.110875

    Article  CAS  Google Scholar 

  26. R. Dohmen, H. R. Marschall, Th. Ludwig, and J. Polednia, Phys. Chem. Miner. 46, 311 (2019). https://doi.org/10.1007/s00269-018-1005-7

    Article  CAS  Google Scholar 

  27. Sh. Li, L. Xiao, S. Liu, Ya. Zhang, J. Xu, X. Zhou, G. Zhao, Zh. Cai, and X. Zhao, J. Eur. Ceram. Soc. 42 (12), 4866 (2022). https://doi.org/10.1016/j.jeurceramsoc.2022.05.009

    Article  CAS  Google Scholar 

  28. D. Ansel, I. Thibon, M. Boliveau, and J. Debuigne, Acta Mater. 46 (2), 423 (1998). https://doi.org/10.1016/S1359-6454(97)00272-3

    Article  CAS  Google Scholar 

  29. Y. Liu, K. Li, H. Wu, M. Song, W. Wang, N. Li, and H. Tang, J. Mech. Behav.Biomed. Mater. 51, 302 (2015). https://doi.org/10.1016/j.jmbbm.2015.07.004

    Article  CAS  PubMed  Google Scholar 

  30. R. Krishan, S. P. Garg, N. Krishnamurthy, and E. Paul, Phase Diagrams of Binary Tantalum Alloys (Indian Institute of Metals, Calcutta, 1996).

    Google Scholar 

  31. Y. Zhang, J. P. Zhou, D. Q. Sun, and H. M. Li, J. Mater. Res. Technol. 9 (2), 1780 (2020). https://doi.org/10.1016/j.jmrt.2019.12.009

    Article  CAS  Google Scholar 

  32. B. Tang, Y. Tan, T. Xu, Z. Sun, and X. Li, Coatings 10 (9), 813 (2020). https://doi.org/10.3390/coatings10090813

    Article  CAS  Google Scholar 

  33. P. Ioannis, U. Claire, and T. Panos, Sci. Technol. Adv. Mater. 18 (1), 467 (2017). https://www.doi.org/10.1080/14686996.2017.1341802

    Article  Google Scholar 

  34. Y. Yang and D. Mu, J. Eur. Ceram. Soc. 34 (10), 2177 (2014). https://doi.org/10.1016/j.jeurceramsoc.2014.02.018

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. K. Kamynina.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamynina, O.K., Vadchenko, S.G., Kovalev, I.D. et al. Layered Niobium-Cermet Composite Material. J. Surf. Investig. 18, 445–452 (2024). https://doi.org/10.1134/S1027451024020307

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451024020307

Keywords:

Navigation