Skip to main content
Log in

Molecular Dynamics Simulation of the Diffusion of a Copper Atom on Graphene

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The results of studying the effect of geometric and thermodynamic parameters of thermal evaporation and copper deposition on graphene lying on the Cu(111) surface on the adsorption of copper atoms, as well as their surface diffusion, are presented. The simulation is carried out by classical molecular dynamics using chains of Nose–Hoover thermostats. Interatomic interactions are determined by the Tersoff–Brenner, Rosato–Guillope–Legrand, and modified Morse potentials. A simple criterion for the thermalization of adatoms on graphene lying on a Cu(111) surface is formulated and tested. The average length and the mean free path time of the copper atom before and after thermalization at low (7 K) and room temperatures are studied for two evaporation temperatures. The probability of adsorption of the copper atom is found. The distributions along the directions of motion of adatoms during equilibrium diffusion are constructed. The distributions of the free path length and time are shown to have an exponential form. The influence of the Cu(111) substrate on the diffusion of the Cu atom on graphene is studied. The results obtained can be used to simulate the growth of copper nanoclusters on graphene by the kinetic Monte Carlo method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. P. R. Wallace, Phys. Rev. 71 (9), 622 (1947). https://doi.org/10.1103/physrev.71.622

    Article  CAS  Google Scholar 

  2. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 306 (2004). https://doi.org/10.1126/science.1102896

    Article  CAS  Google Scholar 

  3. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005). https://doi.org/10.1038/nature04233

  4. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009). https://doi.org/10.1016/j.physrep.2010.07.003

    Article  CAS  Google Scholar 

  5. M. A. H. Vozmediano, M. I. Katsnelson, and F. Guinea, Phys. Rep. 496 (4–5), 109 (2010). https://doi.org/10.1016/j.physrep.2010.07.003

  6. E. Nakhmedov, E. Nadimi, S. Vedaei, O. Alekperov, F. Tatardar, A. I. Najafov, I. I. Abbasov, and A. M. Saletsky, Phys. Rev. B 99, 125125 (2019). https://doi.org/10.1103/PhysRevB.99.125125

  7. Zh. Zheng, Qi. Ma, Zh. Bi, S. Barrera, M.-H. Liu, N. Mao, Ya. Zhang, N. Kiper, K. Watanabe, T. Taniguchi, J. Kong, W. A. Tisdale, R. Ashoori, N. Gedik, L. Fu, S.-Ya. Xu, and P. Jarillo-Herrero, Nature 588, 71 (2020). https://doi.org/10.1038/s41586-020-2970-9

  8. H. Zhou, W. J. Yu, L. Liu, R. Cheng, Y. Chen, X. Huang, Y. Liu, Y. Wang, Y. Huang, and X. Duan, Nat. Commun. 4, 2096 (2013). https://doi.org/10.1038/ncomms3096

  9. G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. Brink, and P. J. Kelly, Phys. Rev. Lett. 101, 026803 (2008). https://doi.org/10.1103/PhysRevLett.101.026803

  10. Z. Lu, Ya. Wang, J. Chen, J. Wang, Ye, Zhou, and S.‑T. Han, Chem. Rev. 120, 3941 (2020). https://doi.org/10.1021/acs.chemrev.9b00730

  11. V. M. Karpan, G. Giovannetti, P. A. Khomyakov, M. Talanana, A. A. Starikov, M. Zwierzycki, J. Brink, G. Brocks, and P. J. Kelly, Phys. Rev. Lett. 99, 176602 (2007). https://doi.org/10.1103/PhysRevLett.99.176602

  12. P. Sule, M. Szendro, C. Hwang, and L. Tapaszto, Carbon 77, 1082 (2010). https://doi.org/10.1016/j.carbon.2014.06.024

  13. X. Shi, Q. Yin, and Y. Wei, Carbon 50, 3055 (2012). https://doi.org/10.1016/j.carbon.2012.02.092

  14. X. Liu, Y. Han, J. W. Evans, A. K. Engstfeld, R. J. Behm, M. C. Tringides, M. Hupalo, H.-Q. Lin, L. Huang, K.-M. Ho, D. Appy, P. A. Thiel, and C.‑Z. Wang, Progr. Surf. Sci. 90, 397 (2015). https://doi.org/10.1016/j.progsurf.2015.07.001

  15. E. Soy, Z. Liang, and M. Trenary, J. Phys. Chem. C 119 (44), 24796 (2015). https://doi.org/10.1021/acs.jpcc.5b06472

  16. E. Soy, N. Guisinger, and M. Trenary, J. Phys. Chem. B 122 (2), 572 (2018). https://doi.org/10.1021/acs.jpcb.7b05064

  17. K. Takahashi, 2D Mater. 2 (1), 014001 (2014). https://doi.org/10.1088/2053-1583/2/1/014001

  18. S. V. Kolesnikov, A. V. Sidorenkov, and A. M. Saletsky, Pis’ma Zh. Eksp. Teor. Fiz. 111 (2), 101 (2020). https://doi.org/10.31857/S0370274X20020095

  19. T. Schlick, Molecular Modeling and Simulation (Springer, 2002).

    Book  Google Scholar 

  20. W. G. Hoover, Phys. Rev. A 31 (3), 1695 (1985). https://doi.org/10.1103/PhysRevA.31.1695

  21. G. J. Martina, M. E. Tuckerman, D. J. Tobias, and M. L. Klein, Mol. Phys. 87 (5), 1117 (1996). https://doi.org/10.1080/00268979600100761

  22. J. Tersoff, Phys. Rev. B. 37 (12), 6991 (1988). https://doi.org/10.1103/PhysRevB.37.6991

  23. D. W. Brenner, Phys. Rev. B 42 (15), 9458 (1990). https://doi.org/10.1103/PhysRevB.42.9458

  24. V. Rosato, M. Guillope, and B. Legrand, Philos. Mag. A 59 (2), 2321 (1989). https://doi.org/10.1080/01418618908205062

  25. N. N. Negulyaev, V. S. Stepanyuk, P. Bruno, L. Diekhoner, P. Wahl, and K. Kern, Phys. Rev. B 77, 125437 (2008). https://doi.org/10.1103/PhysRevB.77.125437

  26. S. V. Kolesnikov, A. M. Saletsky, S. A. Dokukin, and A. L. Klavsyuk, Mat. Model. 30 (2), 48 (2018). https://doi.org/10.1134/S2070048218050071

Download references

Funding

This work was supported by the Russian Science Foundation (grant no. 21-72-20034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Khudyakov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khudyakov, S.V., Kolesnikov, S.V. & Saletsky, A.M. Molecular Dynamics Simulation of the Diffusion of a Copper Atom on Graphene. J. Surf. Investig. 18, 160–165 (2024). https://doi.org/10.1134/S1027451024010270

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451024010270

Keywords:

Navigation