Skip to main content
Log in

Crystallography Based on Synchrotron Radiation: Experiments of Russian Users of the ESRF BM01 Diffraction Beam Line

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The review deals with studies carried out at the BM01 diffraction beam line of the European Synchrotron Radiation Facility. X-ray diffraction analysis of single-crystal proton conductors demonstrates the possibilities of a precise diffraction experiment in which phase transitions associated with the release of crystallization water and transformation of the network of hydrogen contacts are investigated. Scanning of reciprocal space with the help of a 2D detector enables us to determine the new phase symmetry in a thin-film multiferroic sample based on bismuth ferrite (the given phase is stable only under thin-film conditions). A combination of Bragg and diffusion scattering processes is employed to investigate the interdependence between the structure and dynamics of a crystal lattice and the physical properties of a relaxor material with a perovskite-like structure. The complementarity and synergy of neutron and synchrotron experiments are demonstrated using the combined study of materials from the manganese-silicide group, which has revealed a nontrivial relationship between magnetic and crystallographic chiralities in noncollinear magnets. Although the given review is limited to only a few experiments carried out by Russian scientists at the BM01 beam line, they still illustrate a variety of problems that can be solved using a modern diffraction station where the bending magnet of a third-generation synchrotron is employed as the synchrotron radiation source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Dyadkin, P. Pattison, V. Dmitriev, and D. Chernyshov, J. Synchrotron Radiat. 23, 1 (2016).

    Article  Google Scholar 

  2. A. I. Baranov, I. P. Makarova, L. A. Muradyan, et al., Kristallografiya 32 (3), 682 (1987).

    Google Scholar 

  3. K. Lukaszewicz, A. Pietraszko, and M. A. Augustyniak, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 49, 430 (1993).

    Article  Google Scholar 

  4. Y. Matsuo, S. Kawachi, Y. Shimizu, and S. Ikehata, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 58, 192 (2002).

    Article  Google Scholar 

  5. I. P. Makarova, T. S. Chernaya, A. A. Filaretov, et al., Crystallogr. Rep. 55 (3), 393 (2010).

    Article  Google Scholar 

  6. E. V. Dmitricheva, I. P. Makarova, V. V. Grebenev, et al., Crystallogr. Rep. 59 (6), 878 (2014).

    Article  Google Scholar 

  7. E. V. Dmitricheva, I. P. Makarova, and V. V. Grebenev, Crystallogr. Rep. 60 (6), 814 (2015).

    Article  Google Scholar 

  8. A. I. Baranov, V. V. Sinitsyn, V. Yu. Vinnichenko, et al., Solid State Ionics 97, 153 (1997).

    Article  Google Scholar 

  9. S. Vrtnik, T. Apih, M. Klanjcek, et al., J. Phys.: Condens. Matter 16, 7967 (2004).

    Google Scholar 

  10. I. Makarova, V. Grebenev, E. Dmitricheva, et al., Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 70 (2), 218 (2014).

    Article  Google Scholar 

  11. E. V. Dmitricheva, I. P. Makarova, V. V. Grebenev, et al., Solid State Ionics 268, 68 (2014).

    Article  Google Scholar 

  12. J. Wang, J. B. Neaton, H. Zheng, et al., Science 299, 1719 (2003).

    Article  Google Scholar 

  13. G. Xu, H. Hiraka, G. Shirane, et al., Appl. Phys. Lett. 86, 182905 (2005).

    Article  Google Scholar 

  14. X. Qi, M. Wei, Y. Lin, et al., Appl. Phys. Lett. 86, 071913 (2005).

    Article  Google Scholar 

  15. V. B. Shirokov, Yu. I. Yuzyuk, B. Dkhil, and V. V. Lemanov, Phys. Rev. B 79, 144118 (2009).

    Article  Google Scholar 

  16. V. M. Mukhortov, Yu. I. Golovko, and Yu. I. Yuzyuk, Usp. Fiz. Nauk 179, 23 (2009).

    Article  Google Scholar 

  17. Yu. I. Yuzyuk, I. N. Zakharchenko, V. A. Alyoshin, et al., Phys. Solid State 49, 1759 (2007).

    Article  Google Scholar 

  18. A. D. Bruce and R. A. Cowley, Structural Phase Transitions (Taylor and Francis, London, 1981).

    Google Scholar 

  19. X. Hao, J. Adv. Dielectr. 3, 1330001 (2013).

    Article  Google Scholar 

  20. R. Pirc, B. Rozic, J. Koruza, et al., Europhys. Lett. 107, 17002 (2014).

    Article  Google Scholar 

  21. A. K. Tagantsev, K. Vaideeswaran, S. B. Vakhrushev, et al., Nat. Commun. 4, 3229 (2013).

    Article  Google Scholar 

  22. R. G. Burkovsky, A. K. Tagantsev, K. Vaideeswaran, et al., Phys. Rev. B 90, 144301 (2014).

    Article  Google Scholar 

  23. A. Bosak, D. Chernyshov, S. Vakhrushev, and M. Krisch, Acta Crystallogr., Sect. A: Found. Crystallogr. 68, 117 (2012).

    Article  Google Scholar 

  24. A. Bosak, D. Chernyshov, and S. Vakhrushev, J. Appl. Crystallogr. 45, 1309 (2012).

    Article  Google Scholar 

  25. B. Noheda, Curr. Opin. Solid State Mater. Sci. 6, 27 (2002).

    Article  Google Scholar 

  26. A. M. Glazer, P. A. Thomas, K. Z. Baba-Kishi, et al., Phys. Rev. B 70, 184123 (2004).

    Article  Google Scholar 

  27. B. Noheda and D. E. Cox, Phase Transitions 79, 5 (2006).

    Article  Google Scholar 

  28. D. Andronikova, Yu. Bronwald, R. G. Burkovsky, et al., Solid State Phenom. 245, 211 (2016).

    Article  Google Scholar 

  29. I. Bronwald, D. Andronikova, R. Burkovsky, et al., Ferroelectrics 503, 45 (2016).

    Article  Google Scholar 

  30. G. Burkovsky, Yu. A. Bronwald, A. V. Filimonov, et al., Phys. Rev. Lett. 109, 097604 (2012).

    Article  Google Scholar 

  31. S. V. Grigoriev, D. Chernyshov, V. A. Dyadkin, et al., Phys. Rev. Lett. 102, 037204 (2012).

    Article  Google Scholar 

  32. S. V. Grigoriev, D. Chernyshov, V. A. Dyadkin, et al., Phys. Rev. Lett. 110, 207201 (2013).

    Article  Google Scholar 

  33. S. V. Grigoriev, S.-A. Siegfried, E. V. Altynbayev, et al., Phys. Rev. B 90, 174414 (2014).

    Article  Google Scholar 

  34. S.-A. Siegfried, E. V. Altynbaev, N. M. Chubova, et al., Phys. Rev. B 91, 184406 (2015).

    Article  Google Scholar 

  35. V. Dmitriev, D. Chernyshov, S. Grigoriev, and S. Dyadkin, J. Phys.: Condens. Matter 24, 366005 (2012).

    Google Scholar 

  36. V. A. Dyadkin, S. V. Grigoriev, D. Menzel, et al., Phys. Rev. B 84, 014435 (2011).

    Article  Google Scholar 

  37. V. A. Dyadkin, S. V. Grigoriev, D. Menzel, et al., Phys. B (Amsterdam, Neth.) 406, 2385 (2011).

    Article  Google Scholar 

  38. V. Dyadkin, K. Prša, S. V. Grigoriev, et al., Phys. Rev. B 89, 140409(R) (2014).

    Article  Google Scholar 

  39. H. Sønsteby, D. Chernyshov, M. Getz, et al., J. Synchrotron Radiat. 20, 644 (2013).

    Article  Google Scholar 

  40. T. Yu. Vergentev, V. Dyadkin, and D. Yu. Chernyshov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 9 (3), 436 (2015).

    Article  Google Scholar 

  41. V. Dyadkin, J. Wright, P. Pattison, and D. Chernyshov, J. Appl. Crystallogr. 49, 3 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Yu. Chernyshov.

Additional information

Original Russian Text © V.P. Dmitriev, D.Yu. Chernyshov, V.A. Dyadkin, I.P. Makarova, I.N. Leontyev, D.A. Andronikova, I. Bronwald, R.G. Burkovsky, S.B. Vakhrushev, A.V. Filimonov, S.V. Grigoriev, 2018, published in Poverkhnost’, 2018, No. 5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dmitriev, V.P., Chernyshov, D.Y., Dyadkin, V.A. et al. Crystallography Based on Synchrotron Radiation: Experiments of Russian Users of the ESRF BM01 Diffraction Beam Line. J. Surf. Investig. 12, 395–407 (2018). https://doi.org/10.1134/S1027451018030084

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451018030084

Keywords

Navigation