Skip to main content
Log in

Electrochemical Properties of Superionic Conductors CsAg4Br3 – хI2 + х

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Solid solutions CsAg4Br3 – хI2 + х (x = 0.38; 0.50; 0.68) are prepared by solid-state synthesis; the single phase of the products is confirmed using the methods of X-ray diffraction and differential scanning calorimetry. The studies of electrotransport characteristics of CsAg4Br3 – хI2 + х involve measuring the ionic conductivity by the four-probe method in the temperature interval from –50 to +120°C and estimating its electronic component by the Hebb–Wagner method. It is shown that in the studied interval of compositions, the ionic conductivity of CsAg4Br3 – хI2 + х solid solutions is practically independent of x, approaching the conductivity of the well-known superionic conductor RbAg4I5. The activation energy of conduction is found to be about 10 kJ mol–1 for all compounds studied. The oxidation potential determined by the method of stepwise polarization for CsAg4Br3 – хI2 + х solid solutions is considerably higher as compared with RbAg4I5, being in the range of 0.75–0.78 V (vs. Ag0/Ag+). The high electrochemical characteristics of CsAg4Br3 – хI2 + х (0.38 ≤ x ≤ 0.63) and the absence of polymorphic transitions in the considered interval from –160°С to the melting point (175–178°С) make these materials promising for the use in electrochemical devices, especially in low-temperature applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Geller, S., Crystal structure of the solid electrolyte, RbAg4I5, Science, 1967, vol. 157, no. 3786, p. 310. https://doi.org/10.1126/science.157.3786.310

    Article  CAS  PubMed  Google Scholar 

  2. Topol, L.E. and Owens, B.B., Thermodynamic studies in the high-conducting solid systems rubidium iodide-silver iodide, potassium iodide-silver iodide, and ammonium iodide-silver iodide, J. Phys. Chem., 1968, vol. 72, no. 6, p. 2106. https://doi.org/10.1021/j100852a038

    Article  CAS  Google Scholar 

  3. Bradley, J.N. and Greene, P.D., Solids with high ionic conductivity in Group 1 halide systems, Trans. Faraday Soc., 1967, vol. 63, p. 424. https://doi.org/10.1039/TF9676300424

    Article  CAS  Google Scholar 

  4. Owens, B.B. and Argue, G.R., High-conductivity solid electrolytes: MAg4I5, Science, 1967, vol. 157, p. 308. https://doi.org/10.1126/science.157.3786.308

    Article  CAS  PubMed  Google Scholar 

  5. Ivanov-Shits, A.K. and Murin, I.V., Ionika tverdogo tela (Solid State Ionics), vol. I, St. Petersburg: St. Petersburg Univ., 2000.

  6. Despotuli, A.L., Lichkova, H.V., Minenkova, H.A., and Nosenko, S.V., Preparation and certain properties of CsAg4Br3 – xI2 + x and RbAg4I5 thin film solid electrolytes, Elektrokhimiya, 1990, vol. 26, p. 1524.

    CAS  Google Scholar 

  7. Lichkova, H.V., Despotuli, A.L., Zagorodnev, V.N., Minenkova, H.A., and Shakhlevich, K.V., Ionic conductivity of solid electrolytes in two- and three-component glass-forming systems AgX–CsX (X=Cl, Br, I), Elektrokhimiya, 1989, vol. 25, p. 1636.

    CAS  Google Scholar 

  8. Despotuli, A.L., Zagorodnev, V.N., Lichkova, N.V., and Minenkova, N.A., New high conductive CsAg4Br3 – xI2 + x (0.25 < x < 1) solid electrolytes, Fiz. Tverd. Tela (Leningrad), 1989, vol. 31, no. 9, p. 242.

    CAS  Google Scholar 

  9. Lichkova, N.V., Despotuli, A.L., Zagorodnev, V.N., and Minenkova, N.A., Superionic glasses based on silver and cesium monohalides, Mater. Sci. Forum, 1991, vols. 67–68, p. 601. https://doi.org/10.4028/www.scientific.net/MSF.67-68.601

    Article  Google Scholar 

  10. Lichkova, N.V., Despotuli, A.L., Zagorodnev, V.N., and Minenkova, N.A., RF Patent 1697573 P. H01M 6/18 (1995.01), 1989.

  11. Despotuli, A.L. and Lichkova, N.V., RF Patent 2012105 C1, WIPO H01M 6/18, 1991.

  12. Tolstoguzov, A.B., Belykh, S.F., Gololobov, G.P., Gurov, V.S., Gusev, S.I., Suvorov, D.V., Taganov, A.I., Fud, D.J., Ai, Z., and Liu, C.S., Ion-beam sources based on solid electrolytes for aerospace applications and ion-beam technologies (Review), Prib. Tekh. Eksp., 2018, vol. 61, no. 2, p. 159. https://doi.org/10.7868/S0032816218020106

    Article  Google Scholar 

  13. Despotuli, A.L. and Andreeva, A.V., Nanoionics: New materials and supercapacitors, Nanotechnol. Russ., 2010, vol. 5, nos. 7–8, p. 506. https://doi.org/10.1134/S1995078010070116

    Article  Google Scholar 

  14. Owens, B.B., Solid state electrolytes: overview of materials and applications during the last third of the Twentieth Century, J. Power Sources, 2000, vol. 90, p. 2. https://doi.org/10.1016/S0378-7753(00)00436-5

    Article  CAS  Google Scholar 

  15. Palakkathodi Kammampata, S. and Thangadurai, V., Cruising in ceramics—discovering new structures for all-solid-state batteries—fundamentals, materials, and performances, Ionics, 2018, vol. 24, no. 3, p. 639. https://doi.org/10.1007/s11581-017-2372-7

    Article  CAS  Google Scholar 

  16. Glukhov, A.A., Belmesov, A.A., Nechaev, G.V., Ukshe, A.E., Reznitskikh, O.G., Bukun, N.G., Shmygleva, L.V., and Dobrovolsky, Y.A., Anode material for all-solid-state battery based on solid electrolyte CsAg4Br2.5I2.5: Theory and experiment, Mater. Sci. Eng. B, 2022, vol. 278, art. 115617. https://doi.org/10.1016/j.mseb.2022.115617

    Article  CAS  Google Scholar 

  17. Reznitskikh, O.G., Yaroslavtseva, T.V., Glukhov, A.A., Popov, N.A., Urusova, N.V., Bukun, N.G., Dobrovolsky, Yu. A., and Bushkova, O.V., Synthesis and comparative investigation of the electrochemical characteristics of CsAg4Br2.5I2.5 and RbAg4I5 solid electrolytes, Russ. J. Electrochem., 2022, vol. 58, p. 927. https://doi.org/10.1134/S102319352210010X

    Article  CAS  Google Scholar 

  18. Rodríguez-Carvajal, J., Recent advances in magnetic structure determination by neutron powder diffraction, Physica B, 1993, vol. 192, nos. 1–2, p. 55. https://doi.org/10.1016/0921-4526(93)90108-I

    Article  Google Scholar 

  19. Valverde, N., Thermodynamic stabilization of the solid electrolyte RbAg4I5, J. Electrochem. Soc., 1980, vol. 127, no. 11, p. 2425. https://doi.org/10.1149/1.2129487

    Article  CAS  Google Scholar 

  20. Bushkova, O.V., Reznitskikh, O.G., Yaroslavtseva, T.V., Popov, N.A., Nepomiluev, A.M., Novikov, D.V., and Dobrovolsky, Yu.A., RF Patent 2720349, 2019.

  21. Shahi, K. and Chandra, S., Thermoelectric power of the superionic conductors Ag4MI5 (M = K and Rb), J. Phys. C: Solid State Phys., 1976, vol. 9, no. 16, p. 3105. https://doi.org/10.1088/0022-3719/9/16/016

    Article  CAS  Google Scholar 

  22. Scrosati, B., Germano, G., and Pistoia, G., Electrochemical properties of RbAg4I5 solid electrolyte: I. Conductivity studies. J. Electrochem. Soc., 1971, vol. 118, no. 1, p. 86. https://doi.org/10.1149/1.2407958

    Article  Google Scholar 

  23. Ukshe, E.A. and Bukun, N.G., Tverdye elektrolity (Solid Electrolytes), Moscow: Nauka, 1977.

  24. Zolotoyabko, E.V. and Ovanesyan, N.S., Moessbauer diffraction in the superionic conductor RbAg4I5, Phys. Status Solidi B, 1985, vol. 129, no. 2, p. 587. https://doi.org/10.1002/pssb.2221290216

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the State Grant for the Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences on the subject no. 0320-2019-0005 (R&D registration number АААА-А19-119102990044-6) and the State Grant for the Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences in the subject no. 0089-2019-0007 (R&D registration number AAAA-A19-119061890019-5).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Glukhov or T. V. Yaroslavtseva.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by T. Safonova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glukhov, A.A., Reznitskikh, O.G., Yaroslavtseva, T.V. et al. Electrochemical Properties of Superionic Conductors CsAg4Br3 – хI2 + х. Russ J Electrochem 60, 135–140 (2024). https://doi.org/10.1134/S1023193524020058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193524020058

Keywords:

Navigation