Skip to main content
Log in

The Application of Ferrocene Derivative and CeO–ZnO Nanocomposite-Modified Carbon Paste Electrode for Simultaneous Detection of Penicillamine and Tryptophan

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The electrocatalytic performance of carbon paste electrode modified with ferrocene-derivative (ethyl 2-(4-ferrocenyl[1,2,3]triazol-1-yl)acetate, EFTA) , CeO–ZnO nanocomposite as well as ionic liquid (n-hexyl-3-methylimidazolium hexafluoro phosphate) (CeO–ZnO/ILFCPE) was investigated for simultaneous detection of penicillamine and tryptophan. According to the results, the penicillamine oxidation on the surface of fabricated carbon paste electrode at an optimal pH of 7.0 was observed less positive at 320 mV potential compared to unmodified electrode. The penicillamine oxidation showed the electron transfer coefficient (α) of 0.58 and diffusion coefficient (D) of 1.2 × 10–6 cm2/s. The linear dynamic range was also calculated to be between 0.02–25.0 μM, and the limit of detection (LOD) was 10.0 nM. High selectivity and satisfactory reproducibility found for the modified carbon paste electrode suggest the possibility of analytical applications. The application of the synthesized sensor was examined in real specimens for detection of penicillamine and tryptophan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Li, B.L., Luo, J.H., Luo, H.Q., and Li, N.B., A novel strategy for selective determination of d-penicillamine based on molecularly imprinted polypyrrole electrode via the electrochemical oxidation with ferrocyanide, Sens. Actuators B: Chem., 2013, vol. 186, p. 96.

    Article  CAS  Google Scholar 

  2. Li, N.B. and Kwak, J., A penicillamine biosensor based on tyrosinase immobilized on nano-Au/PAMAM dendrimer modified gold electrode, Electroanalysis, 2007, vol. 19, p. 2428.

    Article  CAS  Google Scholar 

  3. Walshe, J.M., The story of penicillamine: a difficult birth, Mov. Disord., 2003, vol. 18, p. 853.

    Article  PubMed  Google Scholar 

  4. Wang, Q., Dong, D., and Li, N., Electrochemical response of dopamine at a penicillamine self-assembled gold electrode, Bioelectrochemistry, 2001, vol. 54, p. 169.

    Article  CAS  PubMed  Google Scholar 

  5. Felson, D.T., Anderson, J.J., and Meenan, R.F., The comparative efficacy and toxicity of second-line drugs in rheumatoid arthritis results of two metaanalyses, Arthritis Rheum., 1990, vol. 33, p. 1449.

    Article  CAS  PubMed  Google Scholar 

  6. Porifreva, A.V., Gorbatchuk, V.V., Evtugyn, V.G., Stoikov, I.I., and Evtugyn, G.A., Glassy carbon electrode modified with silver nanodendrites implemented in polylactide-thiacalix [4] arene copolymer for the electrochemical determination of tryptophan, Electroanalysis, 2018, vol. 30, p. 641.

    Article  CAS  Google Scholar 

  7. Li, J., Kuang, D., Feng, Y., Zhang, F., Xu, Z., Liu, M., and Wang, D., Green synthesis of silver nanoparticles-graphene oxide nanocomposite and its application in electrochemical sensing of tryptophan, Biosens. Bioelectron., 2013, vol. 42, p. 198.

    Article  CAS  PubMed  Google Scholar 

  8. Mattioli, I.A., Baccarin, M., Cervini, P., and Cavalheiro, É.T., Electrochemical investigation of a graphite-polyurethane composite electrode modified with electrodeposited gold nanoparticles in the voltammetric determination of tryptophan, J. Electroanal. Chem., 2019, vol. 835, p. 212.

    Article  CAS  Google Scholar 

  9. Idili, A., Gerson, J., Parolo, C., Kippin, T., and Plaxco, K.W., An electrochemical aptamer-based sensor for the rapid and convenient measurement of l-tryptophan, Anal. Bioanal. Chem., 2019, vol. 411, p. 2019.

    Article  CAS  Google Scholar 

  10. Beitollahi, H., Garkani-Nejad, F., Tajik, S., and Ganjali, M.R., Voltammetric determination of acetaminophen and tryptophan using a graphite screen printed electrode modified with functionalized graphene oxide nanosheets within a Fe3O4@SiO2 nanocomposite, Iran. J. Pharm. Res., 2019, vol. 18, p. 80.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Han, J., Zhao, J., Li, Z., Zhang, H., Yan, Y., Cao, D., and Wang, G., Nanoporous carbon derived from dandelion pappus as an enhanced electrode material with low cost for amperometric detection of tryptophan, J. Electroanal. Chem., 2018, vol. 818, p. 149.

    Article  CAS  Google Scholar 

  12. Fiorucci, A.R. and Cavalheiro, É.T.G., The use of carbon paste electrode in the direct voltammetric determination of tryptophan in pharmaceutical formulations, J. Pharm. Biomed. Anal., 2002, vol. 28, p. 909.

    Article  CAS  PubMed  Google Scholar 

  13. Gibbs, D.A. and Watts, R.W., Studies on the effect of D-penicillamine and N-acetyl-D-penicillamine on the excretion of some tryptophan metabolites in patients with cystinuria, Clin. Sci., 1969, vol. 36, p. 87.

    CAS  PubMed  Google Scholar 

  14. Salmanipour, A., Taher, M.A., Beitollahi, H., and Hosseinzadeh, R., An electrochemical sensor based on 1-benzyl-4-ferrocenyl-1H-[1,2,3]-triazole/carbon nanotube; detection of D-penicillamine in the presence of tryptophan, Mater. Sci. Eng. C, 2013, vol. 33, p. 3160.

    Article  CAS  Google Scholar 

  15. Mirrahimi, F., Taher, M.A., Beitollahi, H., and Hosseinzadeh, R., Electrocatalytic and selective determination of d-penicillamine in the presence of tryptophan using a benzoylferrocene-modified carbon nanotube paste electrode, Appl. Organomet. Chem., 2012, vol. 26, p. 194.

    Article  CAS  Google Scholar 

  16. Biffar, S., Greely, V., and Tibbetts, D., Determination of penicillamine in encapsulated formulations by high-performance liquid chromatography, J. Chromatogr. A, 1985, vol. 318, p. 404.

    Article  CAS  Google Scholar 

  17. Saetre, R. and Rabenstein, D.L., Determination of penicillamine in blood and urine by high performance liquid chromatography, Anal. Chem., 1978, vol. 50, p. 276.

    Article  CAS  Google Scholar 

  18. Yamashita, G.T. and Rabenstein, D.L., Determination of penicillamine, penicillamine disulfide and penicillamine-glutathione mixed disulfide by high-performance liquid chromatography with electrochemical detection, J. Chromatogr. B: Biomed. Sci. Appl., 1989, vol. 491, p. 341.

    Article  CAS  Google Scholar 

  19. Cavrini, V., Gatti, R., Roveri, P., and Cesaroni, M.R., Use of 4-(6-methylnaphthalen-2-yl)-4-oxobut-2-enoic acid as a reagent for the spectrophotometric and fluorimetric determination of aliphatic thiol drugs, Analyst, 1988, vol. 113, p. 1447.

    Article  CAS  PubMed  Google Scholar 

  20. Besada, A., Tadros, N.B., and Gawargious, Y.A., Spectrophotometric determination of pure and capsule-formulated Penicillamine, Anal. Lett., 1987, vol. 20, p. 809.

    Article  CAS  Google Scholar 

  21. Besada, A., A new simple and sensitive spectrophotometric method for determination of penicillamine by reaction with nitrite and Co(II) ions, Anal. Lett., 1988, vol. 21, p. 435.

    Article  CAS  Google Scholar 

  22. Al-Majed, A.A., Spectrophotometric estimation of d‑penicillamine in bulk and dosage forms using 2,6-dichloroquinone-4-chlorimide (DCQ), J. Pharm. Biomed. Anal., 1999, vol. 21, p. 827.

    Article  CAS  PubMed  Google Scholar 

  23. Suliman, F.E.O., Al-Lawati, H.A., Al-Kindy, S.M., Nour, I.E.M., and Salama, S.B., A sequential injection spectrophotometric method for the determination of penicillamine in pharmaceutical products by complexation with iron(III) in acidic media, Talanta, 2003, vol. 61, p. 221.

    Article  CAS  PubMed  Google Scholar 

  24. Vinas, P., Garcia, I.L., and Gil, J.M., Determination of thiol-containing drugs by chemiluminescence-flow injection analysis, J. Pharm. Biomed. Anal., 1993, vol. 11, p. 15.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang, Z.D., Baeyens, W.R.G., Zhang, X.R., and Van Der Weken, G., Chemiluminescence determination of penicillamine via flow injection applying a Quinine-cerium(IV) system, Analyst, 1996, vol. 121, p. 1569.

    Article  CAS  Google Scholar 

  26. Beitollahi, H., Safaei, M., and Tajik, S., Different electrochemical sensors for determination of dopamine as neurotransmitter in mixed and clinical samples: a review, Anal. Bioanal. Chem. Res., 2019, vol. 6, p. 81.

    CAS  Google Scholar 

  27. Karimi-Maleh, H., Karimi, F., Alizadeh, M., and Sanati, A.L., Electrochemical sensors, a bright future in the fabrication of portable kits in analytical systems, Chem. Rec., 2020, vol. 20, p. 682.

    Article  CAS  PubMed  Google Scholar 

  28. Tajik, S. and Beitollahi, H., A sensitive chlorpromazine voltammetric sensor based on graphene oxide modified glassy carbon electrode, Anal. Bioanal. Chem. Res., 2019, vol. 6, p. 171.

    CAS  Google Scholar 

  29. Tajik, S., Beitollahi, H., Garkani-Nejad, F., Kirlikovali, K.O., Van Le, Q., Jang, H.W., Varma, R.S., Farha, O.K., and Shokouhimehr, M., Recent electrochemical applications of metal-organic framework-based materials, Cryst. Growth Des., 2020, vol. 20, p. 7034.

    Article  CAS  Google Scholar 

  30. Karimi-Maleh, H., Karimi, F., Orooji, Y., Mansouri, G., Razmjou, A., Aygun, A., and Sen, F., A new nickel-based co-crystal complex electrocatalyst amplified by NiO dope Pt nanostructure hybrid; a highly sensitive approach for determination of cysteamine in the presence of serotonin, Sci. Rep., 2020, vol. 10, p. 11699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Foroughi, M.M., Beitollahi, H., Tajik, S., Akbari, A., and Hosseinzadeh, R., Electrochemical determination of N-acetylcysteine and folic acid in pharmaceutical and biological samples using a modified carbon nanotube paste electrode, Int. J. Electrochem. Sci., 2014, vol. 9, p. 8407.

    Google Scholar 

  32. Karuppiah, C., Sakthinathan, S., Chen, S.M., Manibalan, K., Chen, S.M., and Huang, S.T., A non-covalent functionalization of copper tetraphenylporphyrin/chemically reduced graphene oxide nanocomposite for the selective determination of dopamine, Appl. Organomet. Chem., 2016, vol. 30, p. 40.

    Article  CAS  Google Scholar 

  33. Beitollahi, H., Mahmoudi Moghaddam, H., and Tajik, S., Voltammetric determination of bisphenol a in water and juice using a lanthanum(III)-doped cobalt(II, III) nanocube modified carbon screen-printed electrode, Anal. Lett., 2019, vol. 52, p. 1432.

    Article  CAS  Google Scholar 

  34. Karimi-Maleh, H., Karimi, F., Malekmohammadi, S., Zakariae, N., Esmaeili, R., Rostamnia, S., Yola, M.L., Atar, N., Movagharnezhad, S., Rajendran, S., Razmjou, A., Orooji, Y., Agarwal, S., Gupta, V.K., and Razmjou, A., An amplified voltammetric sensor based on platinum nanoparticle/polyoxometalate/two-dimensional hexagonal boron nitride nanosheets composite and ionic liquid for determination of N-hydroxysuccinimide in water samples, J. Mol. Liq., 2020, vol. 310, p. 113185.

    Article  CAS  Google Scholar 

  35. Wangfuengkanagul, N. and Chailapakul, O., Electrochemical analysis of D-penicillamine using a boron-doped diamond thin film electrode applied to flow injection system, Talanta, 2002, vol. 58, p. 1213.

    Article  CAS  PubMed  Google Scholar 

  36. Karimi-Maleh, H., Alizadeh, M., Orooji, Y., Karimi, F., Baghayeri, M., Rouhi, J., Tajik, H., Beitollahi, S., Agarwal, V. K., Gupta, S., Rajendran, S., Rostamnia, L., Fu, F., Saberi-Movahed, S., and Malekmohammadi, S., Guanine-based DNA biosensor amplified with Pt/SWCNTs nanocomposite as analytical tool for nanomolar determination of daunorubicin as an anticancer drug: a docking/experimental investigation, Ind. Eng. Chem. Res., 2021, vol. 60, p. 816.

    Article  CAS  Google Scholar 

  37. Tajik, S., Beitollahi, H., Garkani-Nejad, F., Safaei, M., Zhang, K., Van Le, Q., Varma, R.S., Jang, H.W., and Shokouhimehr, M., Developments and applications of nanomaterial-based carbon paste electrodes, RSC Adv., 2020, vol. 10, p. 21561.

    Article  CAS  Google Scholar 

  38. Karimi-Maleh, H., Karimi, F., Rezapour, M., Bijad, M., Farsi, M., Beheshti, A., and Shahidi, S.A., Carbon paste modified electrode as powerful sensor approach determination of food contaminants, drug ingredients, and environmental pollutants: a review, Curr. Anal. Chem., 2019, vol. 15, p. 410.

    Article  CAS  Google Scholar 

  39. Tajik, S., Beitollahi, H., and Biparva, P., Methyldopa electrochemical sensor based on a glassy carbon electrode modified with Cu/TiO2 nanocomposite, J. Serb. Chem. Soc., 2018, vol. 83, p. 863.

    Article  CAS  Google Scholar 

  40. Karimi-Maleh, H., Cellat, K., Arıkan, K., Savk, A., Karimi, F., and Şen, F., Palladium-nickel nanoparticles decorated on functionalized-MWCNT for high precision non-enzymatic glucose sensing, Mater. Chem. Phys., 2020, vol. 250, p. 123042.

    Article  CAS  Google Scholar 

  41. Tajik, S., Mahmoudi-Moghaddam, H., and Beitollahi, H., Screen-printed electrode modified with La3+-doped Co3O4 nanocubes for electrochemical determination of hydroxylamine, J. Electrochem. Soc., 2019, vol. 166, p. B402.

    Article  CAS  Google Scholar 

  42. Miraki, M., Karimi-Maleh, H., Taher, M.A., Cheraghi, S., Karimi, F., Agarwal, S., and Gupta, V.K., Voltammetric amplified platform based on ionic liquid/NiO nanocomposite for determination of benserazide and levodopa, J. Mol. Liq., 2019, vol. 278, p. 672.

    Article  CAS  Google Scholar 

  43. Ganjali, M.R., Salimi, H., Tajik, S., Beitollahi, H., Rezapour, M., and Larijani, B., Application of Fe3O4@SiO2/MWCNT film on glassy carbon electrode for the sensitive electroanalysis of levodopa, Int. J. Electrochem. Sci., 2017, vol. 12, no. 6, p. 5243.

    Article  CAS  Google Scholar 

  44. Esfandiari-Baghbamidi, S., Beitollahi, H., Tajik, S., and Hosseinzadeh, R., Voltammetric sensor based on 1-benzyl-4-ferrocenyl-1H-[1,2,3]-triazole/carbon nanotube modified glassy carbon electrode; detection of hydrochlorothiazide in the presence of propranolol, Int. J. Electrochem. Sci., 2016, vol. 11, p. 10874.

    Article  CAS  Google Scholar 

  45. Karimi-Maleh, H., Sheikhshoaie, M., Sheikhshoaie, I., Ranjbar, M., Alizadeh, J., Maxakato, N.W., and Abbaspourrad, A., A novel electrochemical epinine sensor using amplified CuO nanoparticles and an-hexyl-3-methylimidazolium hexafluorophosphate electrode, New J. Chem., 2019, vol. 43, p. 2362.

    Article  CAS  Google Scholar 

  46. Tahernejad-Javazmi, F., Shabani-Nooshabadi, M., and Karimi-Maleh, H., Analysis of glutathione in the presence of acetaminophen and tyrosine via an amplified electrode with MgO/SWCNTs as a sensor in the hemolyzed erythrocyte, Talanta, 2018, vol. 176, p. 208.

    Article  CAS  PubMed  Google Scholar 

  47. Alavi-Tabari, S.A.R., Khalilzadeh, M.A., and Karimi-Maleh, H., Simultaneous determination of doxorubicin and dasatinib as two breast anticancer drugs uses an amplified sensor with ionic liquid and ZnO nanoparticle, J. Electroanal. Chem., 2018, vol. 811, p. 84.

    Article  CAS  Google Scholar 

  48. Beitollahi, H., Tajik, S., Garkani-Nejad, F., and Safaei, M., Recent advances in ZnO nanostruture based electrochemical sensors and biosensors, J. Mater. Chem. B, 2020, vol. 8, p. 5826.

    Article  PubMed  Google Scholar 

  49. Khan, S.B., Faisal, M., Rahman, M.M., and Jamal, A., Exploration of CeO2 nanoparticles as a chemi-sensor and photo-catalyst for environmental applications, Sci. total Environ., 2011, vol. 409, p. 2987.

    Article  CAS  PubMed  Google Scholar 

  50. Wei, Y., Li, M., Jiao, S., Huang, Q., Wang, G., and Fang, B., Fabrication of CeO2 nanoparticles modified glassy carbon electrode and its application for electrochemical determination of UA and AA simultaneously, Electrochim. Acta, 2006, vol. 52, p. 766.

    Article  CAS  Google Scholar 

  51. Davoudi, S., Givianrad, M.H., Saber-Tehrani, M., and Aberoomand Azar, P., A novel electrochemical sensor based on Co3O4–CeO2–ZnO multi metal oxide nanocomposite for simultaneous detection of nanomolar Pb2+ and Hg2+ in different kind of spices, Indian J. Chem. A, 2020, vol. 58, p. 1075.

    Google Scholar 

  52. Li, X., Zhao, R., Jiang, H., Zhai, Y., and Ma, P., Preparation and catalytic properties of ZnO–CeO2–TiO2 composite, Synth. React. Inorg. Met. Org. Nano-Met. Chem., 2016, vol. 46, p. 775.

    Article  CAS  Google Scholar 

  53. Qiu, J.D., Huang, J., and Liang, R.P., Nanocomposite film based on graphene oxide for high performance flexible glucose biosensor, Sens. Actuators B: Chem., 2011, vol. 160, p. 287.

    Article  CAS  Google Scholar 

  54. Karthick, N.A., Thangappan, R., Arivanandhan, M., Gnanamani, A., and Jayavel, R., A facile synthesis of ferrocene functionalized graphene oxide nanocomposite for electrochemical sensing of lead, J. Inorg. Organomet. Poly. Mater., 2018, vol. 28, p. 1021.

    Article  CAS  Google Scholar 

  55. Li, G., Zeng, J., Zhao, L., Wang, Z., Dong, C., Liang, J., Zhou, Z., and Huang, Y., Amperometric cholesterol biosensor based on reduction graphene oxide-chitosan-ferrocene/platinum nanoparticles modified screen-printed electrode, J. Nanopart. Res., 2019, vol. 21, p. 162.

    Article  CAS  Google Scholar 

  56. Anderson, J.L., Armstrong, D.W., and Wei, G.T., Ionic liquids in analytical chemistry, Anal. Chem., 2006, vol. 78, p. 2892.

    Article  PubMed  Google Scholar 

  57. Baghizadeh, A., Karimi-Maleh, H., Khoshnama, Z., Hassankhani, A., and Abbasghorbani, M., A voltammetric sensor for simultaneous determination of vitamin C and vitamin B6 in food samples using ZrO2 nanoparticle/ionic liquids carbon paste electrode, Food Anal. Methods, 2015, vol. 8, p. 549.

    Article  Google Scholar 

  58. Mahmoudi-Moghaddam, H., Tajik, S., and Beitollahi, H., A new electrochemical DNA biosensor based on modified carbon paste electrode using graphene quantum dots and ionic liquid for determination of topotecan, Microchem. J., 2019, vol. 150, p. 104085.

    Article  CAS  Google Scholar 

  59. Bijad, M., Karimi-Maleh, H., and Khalilzadeh, M.A., Application of ZnO/CNTs nanocomposite ionic liquid paste electrode as a sensitive voltammetric sensor for determination of ascorbic acid in food samples, Food Anal. Methods, 2013, vol. 6, p. 1639.

    Article  Google Scholar 

  60. Beitollahi, H., Movlaee, K., Ganjali, M.R., Norouzi, P., and Hosseinzadeh, R., Application of a nanostructured sensor based on graphene-and ethyl 2-(4-ferrocenyl [1,2,3]triazol-1-yl) acetate-modified carbon paste electrode for determination of methyldopa in the presence of phenylephrine and guaifenesin, Appl. Organomet. Chem., 2018, vol. 32, p. e4243.

    Article  CAS  Google Scholar 

  61. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, 2nd ed., New York: Wiley, 2001.

    Google Scholar 

  62. Galus, Z., Fundamentals of Electrochemical Analysis, New York: Ellis Horwood, 1976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Masoud Reza Shishehbore or Hadi Beitollahi.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parisa Baghbanpoor, Shishehbore, M.R., Beitollahi, H. et al. The Application of Ferrocene Derivative and CeO–ZnO Nanocomposite-Modified Carbon Paste Electrode for Simultaneous Detection of Penicillamine and Tryptophan. Russ J Electrochem 58, 235–247 (2022). https://doi.org/10.1134/S1023193522040048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193522040048

Keywords:

Navigation