Skip to main content
Log in

A Novel Electrochemical Sensor Based on Graphene Oxide Nanosheets and Ionic Liquid Binder for Differential Pulse Voltammetric Determination of Droxidopa in Pharmaceutical and Urine Samples

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Droxidopa is a synthetic amino acid that undergoes conversion to the potent vasoconstrictor norepinephrine in the presence of aromatic amino-acid decarboxylase and pyridoxal phosphate. It is effective for the treatment of frozen gait and dizziness on standing associated with Parkinson’s disease and for the treatment of orthostatic hypotension. In the present work, the anodic oxidation of droxidopa at the surface of novel carbon paste electrode adjusted with ionic liquid (n-hexyl-3-methylimidazolium hexafluoro phosphate) and graphene oxide (GOILCPE) was studied. The structure of the modified electrode was examined via SEM. The electrochemical discernment of the modified electrode was conducted via cyclic voltammetry (CV), chronoamperometry (CHA) and differential pulse voltammetry (DPV). DPV demonstrates a linear response within the 1.0 × 10–7 to 6.0 × 10–4 M range for droxidopa. A detection limit of 3.0 × 10–8 M was obtained. Finally, the modified electrode was applied with success for the accurate detection of droxidopa content within real samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Kumar Gupta, V., Sadeghi, R., and Karimi, F., A novel electrochemical sensor based on ZnO nanoparticle and ionic liquid binder for square wave voltammetric determination of droxidopa in pharmaceutical and urine samples, Sens. Actuat. B, 2013, vol. 186, p. 603.

    Article  CAS  Google Scholar 

  2. Goyal, R.N., Gupta, V.K., and Chatterjee, S., A sensitive voltammetric sensor for determination of synthetic corticosteroid triamcinolone, abused for doping, Biosens. Bioelectron., 2009, vol. 24, p. 3562.

    Article  CAS  PubMed  Google Scholar 

  3. Ensafi, A.A., Dadkhah-Tehrani, S., and Karimi-Maleh, H., Voltammetric determination of glutathione in haemolysed erythrocyte and tablet samples using modifiedmultiwall carbon nanotubes paste electrode, Drug Test. Anal., 2012, vol. 4, p. 978.

    Article  CAS  PubMed  Google Scholar 

  4. Beitollahi, H., Ghofrani Ivari, S., and Torkzadeh-Mahani, M., Application of antibody nanogold-ionic liquid-carbon paste electrode for sensitive electrochemical immunoassay of thyroid-stimulating hormone, Biosens. Bioelectron., 2018, vol. 110, p. 97.

    Article  CAS  PubMed  Google Scholar 

  5. Kaufmann, H., Norcliffe-Kaufmann, L., and Palma, J.-A., Droxidopa in neurogenic orthostatic hypotension, Expert. Rev. Cardiovasc. Ther., 2015, vol. 13, p. 875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Özdokur, K.V., Engin, E., Yengin, Ç., Ertaş, H., and Nil Ertaş, F., Determination of carbidopa, levodopa, and droxidopa by high-performance liquid chromatography-tandem mass spectrometry, Anal. Lett., 2018, vol. 51, p. 73.

    Article  CAS  Google Scholar 

  7. Goldstein, D.S., Kopin, I.J., and Sharabi, Y., Catecholamine autotoxicity. Implications for pharmacology and therapeutics of Parkinson disease and related disorders, Pharmacol. Therap., 2014, vol. 144, p. 268.

    Article  CAS  Google Scholar 

  8. Baghayeri, M., Pt nanoparticles/reduced graphene oxide nanosheets as a sensing platform: Application to determination of droxidopa in presence of phenobarbital, Sens. Actuat. B, 2017, vol. 240, p. 255.

    Article  CAS  Google Scholar 

  9. Mohammadi, S.Z., Beitollahi, H., Nikpour, N., and Hosseinzadeh, R., Electrochemical sensor for determination of ascorbic acid using a 2chlorobenzoyl ferrocene/carbon nanotube paste electrode, Anal. Bioanal. Chem. Res., 2016, vol. 3, p. 187.

    CAS  Google Scholar 

  10. Rohani, T., Mohammadi, S.Z., Karimi, M.A., and Amini, S., Green synthesized silver nanoparticles@zeolite type A hybridized with carbon ceramic, AgZA-CCE, as a new nano-electrocatalyst for detection of ultra-trace amounts of rutin, Chem. Phys. Lett., 2018, vol. 713, p. 259.

    Article  CAS  Google Scholar 

  11. Mohammadi, S.Z., Beitollahi, H., and Hassanzadeh, M., Voltammetric determination of tryptophan using a carbon paste electrode modified with magnesium core shell nanocomposite and ionic liquids, Anal. Bioanal. Chem. Res., 2018, vol. 5, p. 55.

    CAS  Google Scholar 

  12. Baghbamidi, S.E., Beitollahi, H., and Tajik, S., Graphene oxide nano-sheets/ferrocene derivative modified carbon paste electrode as an electrochemical sensor for determination of hydrazine, Anal. Bioanal. Electrochem., 2014, vol. 6, p. 634.

    Google Scholar 

  13. Mohammadi, S.Z., Beitollahi, H., and Fadaeian, H., Voltammetric determination of isoproterenol using a graphene oxide nano sheets paste electrode, J. Anal. Chem., 2018, vol. 73, p. 705.

    Article  CAS  Google Scholar 

  14. Mosazadeh, F., Mohammadi, S.Z., and Sarhadi, A.H., Electrochemical determination of acetaminophen by using modified screen printed carbon electrode, Anal. Bioanal. Electrochem., 2018, vol. 10, p. 1163.

    CAS  Google Scholar 

  15. Goyal, R.N., Oyama, M., Gupta, V.K., Singh, S.P., and Chatterjee, S., Sensors for 5-hydroxytryptamine and 5-hydroxyindole acetic acid based on nanomaterial modified electrodes, Sens. Actuat. B, 2008, vol. 134, p. 816.

    Article  CAS  Google Scholar 

  16. Beitollahi, H. and Tajik, S., Construction of a nanostructure-based electrochemical sensor for voltammetric determination of bisphenol A, Environ. Monit. Assess, 2015, vol. 187, p. 1.

    Article  CAS  Google Scholar 

  17. Mohammadi, S.Z., Reiahipour, E., and Mosazadeh, F., Screen-printed electrodes modified with magnetic core–shell nanoparticles film for the development of a sensor for imipramine detection, Anal. Bioanal. Electrochem., 2018, vol. 10, p. 383.

    CAS  Google Scholar 

  18. Mohammadizadeh, N., Mohammadi, S.Z., and Kaykhaii, M., Carbon paste electrode modified with ZrO2 nanoparticles and ionic liquid for sensing of dopamine in the presence of uric acid, J. Anal. Chem., 2018, vol. 73, p. 685.

    Article  CAS  Google Scholar 

  19. Mohammadi, S.Z., Beitollahi, H., and Mousavi, M., Determination of hydroxylamine using a carbon paste electrode modified with graphene oxide nano sheets, Rus. J. Electrochem., 2017, vol. 53, p. 374.

    Article  CAS  Google Scholar 

  20. Beitollahi, H., Karimi-Maleh, H., and Khabazzadeh, H., Nanomolar and selective determination of epinephrine in the presence of norepinephrine using carbon paste electrode modified with carbon nanotubes and novel 2-(4-oxo-3-phenyl-3,4-dihydroquinazolinyl)-N_-phenyl-hydrazinecarbothioamide, Anal. Chem., 2008, vol. 80, p. 9848.

    Article  CAS  PubMed  Google Scholar 

  21. Mohammadi, S.Z., Sarhadi, A.H., and Mosazadeh, F., Screen-printed electrode modified with magnetic core-shell nanoparticles for detection of chlorpromazine, Anal. Bioanal. Chem. Res., 2018, vol. 5, p. 363.

    CAS  Google Scholar 

  22. Beitollahi, H., Nekooei, S., and Torkzadeh-Mahani, M., Amperometric immunosensor for prolactin hormone measurement using antibodies loaded on a nano-Au monolayer modified ionic liquid carbon paste electrode, Talanta, 2018, vol. 188, p. 701.

    Article  CAS  PubMed  Google Scholar 

  23. Mohammadi, S.Z., Beitollahi, H., and Tajik, S., Nonenzymatic coated screen-printed electrode for electrochemical determination of acetylcholine, Micro Nano Syst. Lett., 2018, vol. 6, p. 9. https://doi.org/10.1186/s40486-018-0070-5

    Article  Google Scholar 

  24. Mohammadi, S.Z., Beitollahi, H., and Bani Asadi, E., Electrochemical determination of hydrazine using a ZrO2 nanoparticles-modified carbon paste electrode, Environ. Monit. Assess, 2015, vol. 187, p. 122.

    Article  PubMed  CAS  Google Scholar 

  25. Zhang, J., Tan, X., Zhao, D., Tan, S., Huang, Z., Mi, Y., and Huang, Z., Study of nimesulide and its determination using multiwalled carbon nanotubes modified glassy carbon electrodes, Electrochim. Acta, 2010, vol. 55, p. 2522.

    Article  CAS  Google Scholar 

  26. Ding, M., Zhou, Y., Liang, X., Zou, H., Wang, Z., Wang, M., and Ma, J., An electrochemical sensor based on graphene/poly(brilliant cresyl blue) nanocomposite for determination of epinephrine, J. Electroanal. Chem., 2016, vol. 763, p. 25.

    Article  CAS  Google Scholar 

  27. Geim, A.K. and Novoselov, K.S., The rise of graphene, Nat. Mater., 2007, vol. 6, p. 183.

    Article  CAS  PubMed  Google Scholar 

  28. Novoselov, K.S., Fal’ko, V.I., Colombo, L., Gellert, P.R., Schwab, M.G., and Kim, K., A roadmap for graphene, Nature, 2012, vol. 490, p. 192.

    Article  CAS  PubMed  Google Scholar 

  29. Chabot, V., Higgins, D., Xiao, A.Yu., Chen, Z., and Zhang, J., A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment, Energy Environ. Sci., 2014, vol. 7, p. 1564.

    Article  CAS  Google Scholar 

  30. Zhu, J., Yang, D., Yin, Z., Yan, Q., and Zhang, H., Graphene and graphene-based materials for energy storage applications, Small, 2014, vol. 10, p. 3480.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, Y., Zeng, G.M., Tang, L., Chen, J., Zhu, Y., He, X.X., and He, Y., Electrochemical sensor based on electrodeposited graphene-Au modified electrode and nanoAu carrier amplified signal strategy for attomolar mercury detection, Anal. Chem., 2015, vol. 87, p. 989.

    Article  CAS  PubMed  Google Scholar 

  32. Xie, Y., Yuan, J., Ye, H., Song, P., and Hu, S., Facile ultrasonic synthesis of graphene/SnO2 nanocomposite and its application to the simultaneous electrochemical determination of dopamine, ascorbic acid, and uric acid, J. Electroanal. Chem., 2015, vol. 749, p. 26.

    Article  CAS  Google Scholar 

  33. Vashist, S.K. and Luong, J.H.T., Recent advances in electrochemical biosensing schemes using graphene and graphene-based nanocomposites, Carbon, 2015, vol. 84, p. 519.

    Article  CAS  Google Scholar 

  34. Halab Shaeli Iessa, K., Zhang, Y., Zhang, G., Xiao, F., and Wang, S., Conductive porous sponge-like ionic liquid-graphene assembly decorated with nanosized polyaniline as active electrode material for supercapacitor, J. Power Sources, 2016, vol. 302, p. 92.

    Article  CAS  Google Scholar 

  35. Absalan, G., Akhond, M., Soleimani, M., and Ershadifar, H., Efficient electrocatalytic oxidation and determination of isoniazid on carbon ionic liquid electrode modified with electrodeposited palladium nanoparticles, J. Electroanal. Chem., 2016, vol. 761, p. 1.

    Article  CAS  Google Scholar 

  36. Yang, J., Wang, Q., Zhang, M., Zhang, S., and Zhang, L., An electrochemical fungicide pyrimethanil sensor based on carbon nanotubes/ionic-liquid construction modified electrode, Food Chem., 2015, vol. 187, p. 1.

    Article  PubMed  CAS  Google Scholar 

  37. Mohammadi, S.Z., Karimi, M.A., and Mofidinasab, N., Rapid preconcentration of palladium and rhodium using magnetic graphene oxide/silicon dioxide nanocomposite prior to FAAS determination, Anal. Meth., 2019, vol. 11, p. 454.

    Article  CAS  Google Scholar 

  38. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, 2nd ed., New York: Wiley, 2001.

    Google Scholar 

  39. Tajik, S., Taher, M.A., and Beitollahi, H., Simultaneous determination of droxidopa and carbidopa using a carbon nanotubes paste electrode, Sens. Actuat. B, 2013, vol. 188, p. 923.

    Article  CAS  Google Scholar 

  40. Movlaee, K., Beitollahi, H., Ganjali, M.R., and Norouzi, P., Strategy for simultaneous determination of droxidopa, acetaminophen and tyrosine using carbon paste electrode modified with graphene and ethyl 2-(4-ferrocenyl-[1,2,3]triazol-1-yl) acetate, J. Electrochem. Soc., 2017, vol. 164, p. H407.

    Article  CAS  Google Scholar 

  41. Beitollahi, H., Salimi, H., and Ganjali, M.R., Simultaneous voltammetric determination of droxidopa, acetaminophen, and tyrosine on hematoxylin and graphene oxide/ZnO nanocomposite-modified glassy carbon electrode, Ionics, 2018, vol. 24, p. 1487.

    Article  CAS  Google Scholar 

  42. Moghaddam, H.M., Beitollahi, H., Tajik, S., Jahani, Sh., Khabazzadeh, H., and Alizadeh, R., Voltammetric determination of droxidopa in the presence of carbidopa using a nanostructured base electrochemical sensor, Russ. J. Electrochem., 2017, vol. 53, p. 452.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors wish to thank Payame Noor University for support of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Z. Mohammadi or H. Beitollahi.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, S.Z., Beitollahi, H., Kaykhaii, M. et al. A Novel Electrochemical Sensor Based on Graphene Oxide Nanosheets and Ionic Liquid Binder for Differential Pulse Voltammetric Determination of Droxidopa in Pharmaceutical and Urine Samples. Russ J Electrochem 55, 1229–1236 (2019). https://doi.org/10.1134/S1023193519120127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519120127

Keywords:

Navigation