Skip to main content
Log in

Effects of KIO3 additive on the direct electrosynthesis of K2FeO4

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

An electrosynthesis in 14.5 M KOH electrolyte using KIO3 additive is presented for the direct synthesis of solid K2FeO4, with a highest efficiency of 77.6%, purities of 95.3–97.8% and a yield of 68 g l−1 K2FeO4 at 65°C. The results show that using the additive during synthesis of ferrate(VI) can increase the current efficiency by 26% than the blank in degree. Its function is similar to the results of using ultrasonic. The techniques of CV, EDX, IR, SEM and XRD are used to feature the Fe electrode or K2FeO4 samples. It is found that addition of KIO3 can increase the potential of oxygen evolution on the CV of Fe anode in KOH significantly. The EDX measurement displays that K2FeO4 sample obtained using KIO3 additive contains no iodine. The sample exhibits similar IR feature absorption spectra and XRD patterns but some dissimilar crystal morphologies to the one with blank.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Delaude, L. and Laszlo, P., J. Org. Chem., 1996, vol. 61, p. 6360.

    Article  CAS  Google Scholar 

  2. Jiang, J.Q. and Lloyd, B., Water Res., 2002, vol. 36, p. 1397.

    Article  CAS  Google Scholar 

  3. Licht, S., Wang, B.H., and Ghosh, S., Science, 1999, vol. 285, p. 1039.

    Article  CAS  Google Scholar 

  4. Licht, S., Naschitz, V., Rozen, D., and Halperin, N., J. Electrochem. Soc., 2004, vol. 151, p. A1147.

    Article  CAS  Google Scholar 

  5. Licht, S. and De Alwis, C., J. Phys. Chem., Ser. B, 2006, vol. 110, p. 12394.

    Article  CAS  Google Scholar 

  6. Yu, X. and Licht, S., J. Power Sources, 2007, vol. 171, p. 966.

    Article  CAS  Google Scholar 

  7. Yu, X. and Licht, S., J. Power Sources, 2007, vol. 171, p. 1010.

    Article  CAS  Google Scholar 

  8. Wang, Y.L., Ye, S.H., Wang, Y.Y., Cao, J.S., and Wu, F., Electrochim. Acta, 2009, vol. 54, p. 4131.

    Article  CAS  Google Scholar 

  9. Wang, S.Q., Yang, Z.H., Liu, D.R., Yi, S., and Chi, W.W., Electrochem. Commun., 2010, vol. 12, p. 367.

    Article  CAS  Google Scholar 

  10. Lapicque, F. and Valentin, G., Electrochem. Commun., 2002, vol. 4, p. 764.

    Article  CAS  Google Scholar 

  11. De Koninck, M., Brouse, T., and Belanger, D., Electrochim. Acta, 2003, vol. 48, p. 1435.

    Article  Google Scholar 

  12. Ding, Z., Yang, C.C., and Wu, Q., Electrochim. Acta, 2004, vol. 49, p. 3155.

    Article  CAS  Google Scholar 

  13. He, W.C., Wang, J.M., Yang, C.C., and Zhang, J.Q., Electrochim. Acta, 2006, vol. 51, p. 1967.

    Article  CAS  Google Scholar 

  14. Zhang, C.-Z., Liu, Z., Wu, F., Lin, L.-J., and Qi, F., Electrochem. Comm., 2004, vol. 6, p. 1104.

    Article  CAS  Google Scholar 

  15. Canizares, P., Arcis, M., Saez, C., and Rodrigo, M.A., Electrochem. Commun., 2007, vol. 9, p. 2286.

    Article  CAS  Google Scholar 

  16. He, W.C., Wang, J.M., Fan, Y.K., Xu, Z.H., Zhang, J.Q., and Cao, C.-N., Electrochem. Commun., 2007, vol. 9, p. 275.

    Article  CAS  Google Scholar 

  17. He, W.-C., Hu, X.-R., Shen, B.-C., Tang, Z., Wang, J.-M., and Zhang, J.-Q., Chin. J. Inorg. Chem., 2007, vol. 23, p. 655.

    CAS  Google Scholar 

  18. He, W.-C., Shao, H.-B., Chen, Q.-Q., Wang, J.-M., and Zhang, J.-Q., Acta Phys.-Chim. Sin., 2007, vol. 23, p. 1525.

    Article  CAS  Google Scholar 

  19. Yang, W.-H., Zhou, Y., Wang, H.-H., and Bi, D.-Q., Rus. J. Electrochem., 2009, vol. 45, p. 795.

    Article  CAS  Google Scholar 

  20. He, W.C., Wang, J.M., Shao, H.B., Zhang, J.Q., and Cao, C.-N., Electrochem. Commun., 2005, vol. 7, p. 607.

    Article  CAS  Google Scholar 

  21. Xu, Z.H., Wang, J.M., Mao, W.Q., He, W.C., Zhang, J.Q., and Cao, C.-N., J. Solid State Electrochem., 2007, vol. 11, p. 4130.

    Google Scholar 

  22. Hiveš, J., Benová, M., Bouzek, K., and Sharma, V.K., Electrochim. Acta, 2008, vol. 54, p. 203.

    Article  Google Scholar 

  23. Yang, W.-H., Bi, D.-Q., Zhou, Y., Wang, H.-H., and Lan, X.-R., Chin. Electrochem., 2007, vol. 13, p. 445.

    CAS  Google Scholar 

  24. Shao, H.B., Wang, J.M., He, W.C. Zhang, J.Q., and Cao, C.-N., Electrochem. Commun., 2005, vol. 7, p. 1429.

    Article  CAS  Google Scholar 

  25. Yu, X. and Licht, S., J. Appl. Electrochem., 2008, vol. 38, p. 731.

    Article  CAS  Google Scholar 

  26. Mácová, Z., Bouzek, K., Hives, J., Sharma, V.K., Terryn, R.J., and Baum, J.C., Electrochim. Acta, 2009, vol. 54, p. 2673.

    Article  Google Scholar 

  27. Schreyer, J.M., Thompson, G.W., and Ockerman, L.T., Anal. Chem., 1950, vol. 22, p. 1426.

    Article  CAS  Google Scholar 

  28. Audette, R.J. and Quail, J.W., Inorg. Chem., 1972, vol. 11, p. 1904.

    Article  CAS  Google Scholar 

  29. Audette, R.J., Quail, J.W., Black, W.H., and Robertson, B.E., J. Solid State Chem., 1973, vol. 8, p. 43.

    Article  CAS  Google Scholar 

  30. Hoppe, M.L., Schlemper, E.O., and Murmann, R.K., Acta. Crystal. Sec., Ser. B, 1982, vol. 38, p. 2237.

    Article  Google Scholar 

  31. Palenik, G.J., Inorg. Chem., 1967, vol. 6, p. 507.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weichun He.

Additional information

Published in Russian in Elektrokhimiya, 2011, Vol. 47, No. 11, pp. 1375–1380.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, W., Liu, G., Cui, W. et al. Effects of KIO3 additive on the direct electrosynthesis of K2FeO4 . Russ J Electrochem 47, 1287–1292 (2011). https://doi.org/10.1134/S1023193511110097

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193511110097

Keywords

Navigation