Skip to main content
Log in

Genetic Diversity among Takifugu rubripes and Takifugu obscurus in Different Regions of China Based on Mitochondrial DNA Sequencing Data

  • ANIMAL GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The purpose of this study was to explore the genetic diversity, genetic structure, and phylogenetic relationships of different cultured populations of Takifugu rubripes and T. obscurus in China, and to find a DNA barcode that can effectively distinguish one species from the other. In total, 120 T. rubripes and 130 T. obscurus individuals were collected from four and three different regions, respectively. Based on the sequences of the mitochondrial genes COI, COII, COIII, 16S rDNA, and Cytb, the genetic diversity and genetic evolution of the different populations of T. rubripes and T. obscurus were analyzed, and the genes with more polymorphic loci and high genetic diversity were selected for DNA barcoding for the identification of the two species. The results showed that Cytb had the highest genetic diversity, consistent with the genetic diversity of the other four genes. T. rubripes and T. obscurus have low haplotype and diversity indices, indicating that they may be subjected to variety of processes, such as inbreeding or domestication, that could lead to a continuous decline in diversity. From the perspective of differentiation and phylogeny, gene exchange may occur between some of the studied populations. Many populations of T. rubripes and T. obscurus showed limited variation, indicating that they reproduce according to the neutral evolution model, and that their diversity cannot be improved. In addition, the Cytb gene fragment used can effectively distinguish T. rubripes from T. obscurus, which can provide support for species identification and breeding in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Kim, I.S and Lee, W.O., Synopsis of the suborder Tetraodontoidei (Pisces; Tetraodontiformes) from Korea, Korean. J. Orthod., 1990, vol. 2, no. 1, pp. 1—27. https://doi.org/10.2307/1439670

    Article  Google Scholar 

  2. Dou, D.Y., Wang, X.L., Zhu, H.Y., et al., The complete mitochondrial genome of the hybrid of T. obscurus (♀) × T. rubripes (♂), Mitochondrial DNA, Part B, 2019, vol. 4, no. 2, pp. 3196—3197. https://doi.org/10.1080/23802359.2019.1669082

    Article  Google Scholar 

  3. Cui, J.Z., Shen, X.Y., Gong, Q.L., et al., Identification of sex markers by cDNA-AFLP in T. rubripes, Aquaculture, 2006, vol. 257, nos. 1—4, pp. 30—36. https://doi.org/10.1016/j.aquaculture.2006.03.003

    Article  Google Scholar 

  4. Cui, J.Z., Shen, X.Y., Yang, G.P., et al., Characterization of microsatellite DNAs in T. rubripes genome and their utilization in the genetic diversity analysis of T. rubripes and T. pseudommus, Aquaculture, 2005, vol. 250, nos. 1–2, pp. 129—137. https://doi.org/10.1016/j.aquaculture.2005.04.041

    Article  Google Scholar 

  5. Hayashi, K., Koseisya-koseikaku, Tokyo: present status and future prospect, Fisheries and Stock Managements of Ocellate Puffer T. rubripes in Japan, Tabeta, O., Ed., 1997, pp. 9—15.

  6. Liu, B., Zhou, Z., Bai, Y., et al., Genome-scale phylogenetic and population genetic studies provide insight into introgression and adaptive evolution of Takifugu species in East Asia, Front. Genet., 2021, vol. 12, p. 50. https://doi.org/10.3389/fgene.2021.625600

    Article  Google Scholar 

  7. Cheng, Q.T., Wang, C.X., Tian, M.C., et al., Studies on the Chinese tetraodonoid fishes of the genus Fugu, Acta Zool. Sin., 1975, vol. 21, pp. 359—378.

    Google Scholar 

  8. Iranawati, F., NazifahL., Harlyan, L.I., et al., Determination on yellow fin tuna stock (Thunnus albacares) in south Java Sea based on genetic variation by restriction fragment length polymorphism (RFLP) method, Res. J. Life Sci., 2016, vol. 3, no. 1, pp. 6—15. https://doi.org/10.21776/ub.rjls.2016.003.01.2

    Article  Google Scholar 

  9. Mandal, A., Lal, K.K., Mohindra, V., et al., Evaluation of genetic variation in the clown knifefish, Chitala chitala, using allozymes, RAPD, and microsatellites, Biochem. Genet., 2009, vol. 47, nos. 3—4, pp. 216—234. https://doi.org/10.1007/s10528-008-9219-x

    Article  Google Scholar 

  10. Fan, S.G., Huang, H., Liu, Y., et al., Genome-wide identification of microsatellite and development of polymorphic SSR markers for spotted sea bass (Lateolabrax maculatus), Aquac. Rep., 2021, vol. 20. https://doi.org/10.1016/j.aqrep.2021.100677

  11. Dong, J.J., Chen, Z.H., Sun, C.F., et al., Cloning, SNP detection, and growth correlation analysis of the 5′ flanking regions of two myosin heavy chain-7 genes in Mandarin fish (Siniperca chuatsi), Comp. Biochem. Phys., B., 2019, vol. 228, pp. 10—16.

    Article  Google Scholar 

  12. Chuhan, T. and Rajiv, K., Molecular markers and their applications in fisheries and aquaculture, Adv. Biosci. Biotechnol., 2010, vol. 1, no. 4, pp. 281—291. https://doi.org/10.1016/j.cbpb.2018.10.006

    Article  Google Scholar 

  13. Penaloza, C., Manousaki, T., Franch, R., et al., Development and testing of a combined species SNP array for the European seabass (Dicentrarchus labrax) and gilthead seabream (Sparus aurata), Genomics, 2021, vol. 113, no. 4, pp. 2096—2107. https://doi.org/10.1079/9780851995960.0085

    Article  Google Scholar 

  14. Kling, D., On the use of dense sets of SNP markers and their potential in relationship inference, Forensic. Sci. Int.—Gen., 2019, vol. 39, pp. 19—31. https://doi.org/10.1016/j.fsigen.2018.11.022

    Article  Google Scholar 

  15. Hebert, P.D., Ratnasingham, S., De Waard, J.R., Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. London, Ser. B, 2003, vol. 270, pp. 96—99. https://doi.org/10.1098/rsbl.2003.0025

    Article  Google Scholar 

  16. Wang, W.W., Luo, Q.B., Guo, H.Y., et al., Phylogenetic analysis of brine shrimp (Artemia) in China using DNA barcoding, Genom. Proteom. Bioinf., 2008, vol. 6, no. 3, pp. 155—162. https://doi.org/10.1016/s1672-0229(09)60003-6

    Article  Google Scholar 

  17. Aquino, L.M., Tango, J.M., Canoy, R.J., et al., DNA barcoding of fishes of Laguna de Bay, Philippines, Mitochondrial DNA, 2011, vol. 22, no. 4, pp. 143—153. https://doi.org/10.3109/19401736.2011.624613

    Article  Google Scholar 

  18. Wibowo, A., Sloterdijk, H., and Ulrich, S.P., Identifying Sumatran peat swamp fish larvae through DNA barcoding: evidence of complete life history pattern, Procedia Chem., 2015, vol. 14, pp. 76—84. https://doi.org/10.1016/j.proche.2015.03.012

    Article  Google Scholar 

  19. Ayudhaya, P.T., Muangmai, N., Banjongsat, N., et al., Unveiling cryptic diversity of the anemonefish genera Amphiprion and Premnas (Perciformes: Pomacentridae) in Thailand with mitochondrial DNA barcoding, Agric. Nat. Res., 2017, vol. 51, no. 3, pp. 198—205. https://doi.org/10.1016/j.anres.2017.07.001

    Article  Google Scholar 

  20. Wang, Q.L., Zhang, H.T., Ren, Y.Q, et al., Comparison of growth parameters of tiger puffer Takifugu rubripes from two culture systems in China, Aquaculture, 2016, vol. 453, pp. 49—53. https://doi.org/10.1016/j.aquaculture.2015.11.022

    Article  Google Scholar 

  21. Liu, Q., Liao, Y., Wu, Y., et al., Cloning and characterization of carnitine palmitoyl transferase Iα (CPT1α) from obscure puffer (Takifugu obscurus), and its gene expression in response to different lipid sources, Aquac. Rep., 2020, vol. 18, p. 100424. https://doi.org/10.1016/j.aqrep.2020.100424

    Article  Google Scholar 

  22. Nong, X., Zhong, S.N., Li, S.M., et al., Genetic differentiation of Pseudoregma bambucicola population based on mtDNA COII gene, Saudi J. Biol. Sci., 2019, vol. 26, no. 5, pp. 1032—1036. https://doi.org/10.1016/j.sjbs.2019.04.016

    Article  Google Scholar 

  23. Liu, Z.J. and Cordes, J.F., DNA marker technologies and their applications in aquaculture genetics, Aquaculture, 2004, vol. 238, nos. 1—4, pp. 1—37. https://doi.org/10.1016/j.aquaculture.2004.05.027

    Article  Google Scholar 

  24. Shen, Y.J., Guan, L.H., Wang, D.Q., et al., DNA barcoding and evaluation of genetic diversity in Cyprinidae fish in the midstream of the Yangtze River, Ecol. Evol., 2016, vol. 6, no. 9, pp. 2702—2713. https://doi.org/10.1002/ece3.2060

    Article  Google Scholar 

  25. Fahmi, M.R., Kusrini, E., Hayuningtiyas, E.P., et al., DNA barcoding using COI gene sequences of wild betta fighting fish from Indonesia: phylogeny, status and diversity, Indones. Fish. Res. J., 2020, vol. 26, no. 2, pp. 83—96. https://doi.org/10.15578/ifrj.26.2.2020.97-105

    Article  Google Scholar 

  26. Yuan, S., Liu, M., and Zhao, Z., Remarkably low genetic diversity and shallow population structure detected of the spiny eel (Sinobdella sinensis) in Eastern China, Genes Genomics, 2020, vol. 42, pp. 1251—1257. https://doi.org/10.1007/s13258-020-00993-x

    Article  Google Scholar 

  27. Gregorius, H.R. and Kleinhchmit, J., The environmental dichotomy of adaptation and the role of genetic diversity, Silvae Genet., 1999, vol. 48, no. 3, pp. 193—199. https://doi.org/10.31274/rtd-180813-9943

    Article  Google Scholar 

  28. Waludin, S.N., Phang, I.C., and Mukai, Y., Genetic diversity of the orange-spotted grouper (Epinephelus coioides) in Terengganu Malaysia based on mitochondrial cytochrome b sequence data, Malays. Appl. Biol., 2018, vol. 47, no. 6, pp. 61—68.

    Google Scholar 

  29. Grant, W. and Bowen, B., Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation, J. Hered., 1998, vol. 89, no. 5, pp. 415—426. https://doi.org/10.1093/jhered/89.5.415

    Article  Google Scholar 

  30. Hao, J., Sun, X., and Meng, X., Analyzing the polymorphisms of T. rubripes with microsatellite, J. Shanghai Fish. Univ., 2006, vol. 15, no. 1, pp. 21—24. https://doi.org/10.1016/j.ejps.2006.05.004.

  31. Verspoor, E., Reduced genetic variability in first-generation hatchery populations of Atlantic salmon (Salmo salar), Can. J. Fish. Aquat. Sci., 1988, vol. 45, no. 10, pp. 1686—1690. https://doi.org/10.1139/f88-199

    Article  Google Scholar 

  32. Wright, S., Evolution in Mendelian populations, Bull. Math. Biol., 1990, vol. 52, nos. 1—2, pp. 241—295. https://doi.org/10.1093/genetics/16.3.290

    Article  Google Scholar 

  33. Wang, J.J., Liao, M.J., Li, B., et al., Genetic diversity and population structure of Apostichopus japonicus from different geographical populations along the coast of China, South Korea and Russia based on multiple mitochondrial sequences, Adv. Fish. Sci., 2020, vol. 41, no. 1, pp. 75—85.

    Google Scholar 

  34. Liu, Y.Z. and Xu, C.X., The lifting of the ban on large-scale breeding of puffer fish will become the mainstream, Aquat. Sci. Technol. Inf., 2017, vol. 5, pp. 62—63.

    Google Scholar 

  35. Cheng, C.H., Zhang, M.Y., Liu, K., et al., Analysis of genetic diversity of four T. obscurus populations using srap markers, Acta Hydrobiol. Sin., 2012, vol. 36, no. 5, pp. 858—864. https://doi.org/10.3724/sp.j.1035.2012.00858

    Article  Google Scholar 

  36. Liu, B., Zhou, Z., Bai, Y., et al., Genome-scale phylogenetic and population genetic studies provide insight into introgression and adaptive evolution of Takifugu species in East Asia, Front. Genet., 2021, vol. 12, p. 50. https://doi.org/10.3389/fgene.2021.625600

    Article  Google Scholar 

  37. Del-Prado, R., Cubas, P., Lumbsch, H.T., et al., Genetic distances within and among species in monophyletic lineages of Parmeliceae (Ascomycota) as a tool for taxon delimitation, Mol. Phylogenet. Evol., 2010, vol. 56, no. 1, pp. 125—133. https://doi.org/10.1016/j.ympev.2010.04.014

    Article  Google Scholar 

  38. Smmons, M.P., Zhang, L.B., Webb, C.T., et al., A penalty of using anonymous dominant markers (AFLPs, ISSRs and RAPDs) for phylogenetic inference, Mol. Phylogenet. Evol., 2007, vol. 42, no. 2, pp. 528—542. https://doi.org/10.1016/j.ympev.2006.08.008

    Article  Google Scholar 

  39. Schwarzbach, A.E. and Rlcklefs, R.E., The use of molecular date in mangrove plant research, Wetlands Ecology and Management, 2001, vol. 9, no. 3, pp. 205–211. https://doi.org/10.14719/pst.2017.4.4.349

Download references

Funding

This work was supported by the China Agriculture Research System of MOF and MARA (CARS-47) and the Key Field Innovation Team Project of Dalian City, China (2021RT07) and the Innovation Team Project of Dalian Ocean University, China (B202102).

Author information

Authors and Affiliations

Authors

Contributions

R. Li, Zh. Wang, and H. Xu contributed equally to this work.

Corresponding authors

Correspondence to X. Qiu or X. Wang.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Wang, Z., Xu, H. et al. Genetic Diversity among Takifugu rubripes and Takifugu obscurus in Different Regions of China Based on Mitochondrial DNA Sequencing Data. Russ J Genet 58, 1524–1533 (2022). https://doi.org/10.1134/S1022795422120079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795422120079

Keywords:

Navigation