Skip to main content
Log in

Molecular Mechanisms and Gene Regulation of Melanic Plumage Coloration in Birds

  • REVIEWS AND THEORETICAL ARTICLES
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Melanin-based plumage coloration in birds is determined by the ratio and distribution in the feathers of two types of melanin pigments, eumelanin and pheomelanin. The review focuses on different aspects of melanogenesis and transport and deposition of melanins, as well as on gene regulation of numerous processes associated with them. Modern concepts on the functional role of candidate genes are presented and the results of the analysis of their variability in representatives of different bird species are described. The data on the use of whole genome and transcriptome analyses to study the molecular genetic bases of the plumage coloration and pattern are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Bird Coloration: Mechanisms and Measurements, Hill, G.E. and McGraw, K.J., Eds., Boston, MA: Havard Univ. Press, 2006, vol. I.

  2. Galván, I., García-Campa, J., and Negro, J.J., Complex plumage patterns can be produced only with the contribution of melanins, Physiol. Biochem. Zool., 2017, vol. 90, no. 5, pp. 600—604. https://doi.org/10.1086/693962

    Article  PubMed  Google Scholar 

  3. Krishnaswamy, A. and Baranoski, G.V.G., A biophysically-based spectral model of light interaction with human skin, Eurographics, 2004, vol. 23, no. 3, pp. 331—340. https://doi.org/10.1111/j.1467-8659.2004.00764.x

    Article  Google Scholar 

  4. Videira, I.F., Moura, D.F., and Magina, S., Mechanisms regulating melanogenesis, An. Bras. Dermatol., 2013, vol. 88, no. 1, pp. 76—83. https://doi.org/10.1590/s0365-05962013000100009

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pillaiyar, T., Manickam, M., and Jung, S.H., Recent development of signaling pathways inhibitors of melanogenesis, Cell. Signal., 2017, vol. 40, pp. 99—115. https://doi.org/10.1016/j.cellsig.2017.09.004

    Article  CAS  PubMed  Google Scholar 

  6. Serre, C., Busuttil, V., and Botto, J.M., Intrinsic and extrinsic regulation of human skin melanogenesis and Pigm.ation, Int. J. Cosmet. Sci., 2018, vol. 40, no. 4, pp. 328—347. https://doi.org/10.1111/ics.12466

    Article  CAS  PubMed  Google Scholar 

  7. Emaresi, G., Ducrest, A.-L., Bize, P., et al., Pleiotropy in the melanocortin system: expression levels of this system are associated with melanogenesis and Pigm.ation in the tawny owl (Strix aluco), Mol. Ecol., 2013, vol. 22, no. 19, pp. 4915—4930. https://doi.org/10.1111/mec.12438

    Article  CAS  PubMed  Google Scholar 

  8. Liu, X., Zhou, R., Peng, Y., et al., Feather follicles transcriptome profiles in Bashang long-tailed chickens with different plumage colors, Genes Genomics, 2019, vol. 41, no. 11, pp. 1357—1367. https://doi.org/10.1007/s13258-018-0740-y

    Article  CAS  PubMed  Google Scholar 

  9. Natafa, V., Amemiyab, A., Yanagisawab, M., and Le Douarina, N.M., The expression pattern of endothelin 3 in the avian embryo, Mech. Dev., 1998, vol. 73, no. 2, pp. 217—220.

    Article  Google Scholar 

  10. Miwa, M., Inoue-Murayama, M., Aoki, H., et al., Endothelin receptor B2 (EDNRB2) is associated with the panda plumage colour mutation in Japanese quail, Anim. Genet., 2007, vol. 38, no. 2, pp. 103—108. https://doi.org/10.1111/j.1365-2052.2007.01568.x

    Article  CAS  PubMed  Google Scholar 

  11. Kinoshita, K., Akiyama, T., Mizutani, M., et al., Endothelin receptor B2 (EDNRB2) is responsible for the tyrosinase-independent recessive white (mo(w)) and mottled (mo) plumage phenotypes in the chicken, PLoS One, 2014, vol. 9, no. 1. e86361. https://doi.org/10.1371/journal.pone.0086361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li, L., Li, D., Liu, L., et al., Endothelin receptor B2 (EDNRB2) gene is associated with spot plumage pattern in domestic ducks (Anas platyrhynchos), PLoS One, 2015, vol. 10, no. 5. e0125883. https://doi.org/10.1371/journal.pone.0125883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jin, E.J., Erickson, C.A., Takada, S., and Burrus, L.W., Wnt and BMP signaling govern lineage segregation of melanocytes in the avian embryo, Dev. Biol., 2001, vol. 233, no. 1, pp. 22—37. https://doi.org/10.1006/dbio.2001.0222

    Article  CAS  PubMed  Google Scholar 

  14. Dunn, K.J., Brady, M., Jambor, C.O., et al., WNT1 and WNT3a promote expansion of melanocytes through distinct modes of action, Pigm. Cell Res., 2005, vol. 18, no. 3, pp. 167—180. https://doi.org/10.1111/j.1600-0749.2005.00226.x

    Article  CAS  Google Scholar 

  15. Chang, C.H., Tsai, R.K., Tsai, M.H., et al., The roles of Frizzled-3 and Wnt3a on melanocyte development: in vitro studies on neural crest cells and melanocyte precursor cell lines, J. Dermatol. Sci., 2014, vol. 75, no. 2, pp. 100—108. https://doi.org/10.1016/j.jdermsci.2014.04.012

    Article  CAS  PubMed  Google Scholar 

  16. Takeda, K., Yasumoto, K., Takada, R., et al., Induction of melanocyte-specific microphthalmia-associated transcription factor by Wnt-3a, J. Biol. Chem., 2000, vol. 275, no. 19, pp. 14013—14016. https://doi.org/10.1074/jbc.C000113200

    Article  CAS  PubMed  Google Scholar 

  17. Ashman, L.K., The biology of stem cell factor and its receptor C-kit, Int. J. Biochem. Cell Biol., 1999, vol. 31, no. 10, pp. 1037—1051. https://doi.org/10.1016/s1357-2725(99)00076-x

    Article  CAS  PubMed  Google Scholar 

  18. Hou, L., Panthier, J.J., and Arnheiter, H., Signaling and transcriptional regulation in the neural crest-derived melanocyte lineage: interactions between KIT and MITF, Development, 2000, vol. 127, no. 4, pp. 5379—5389.

    Article  CAS  Google Scholar 

  19. Imokawa, G., Kobayashi, T., and Miyagishi, M., Intracellular signaling mechanisms leading to synergistic effects of endothelin-1 and stem cell factor on proliferation of cultured human melanocytes: cross-talk via trans-activation of the tyrosine kinase c-kit receptor, J. Biol. Chem., 2000, vol. 275, no. 43, pp. 33321—33328. https://doi.org/10.1074/jbc.M004346200

    Article  CAS  PubMed  Google Scholar 

  20. The Pigmentary System: Physiology and Pathophysiology, Nordlund, J.J., Boissy, R.E., Hearing, V.J., Eds., Oxford: Blackwell, 2006, 2nd ed.

    Google Scholar 

  21. Roulin, A. and Ducrest, A.L., Genetics of colouration in birds, Semin. Cell Dev. Biol., 2013, vol. 24, nos. 6—7, pp. 594—608. https://doi.org/10.1016/j.semcdb.2013.05.005

    Article  CAS  PubMed  Google Scholar 

  22. McCallion, A.S. and Chakravarti, A., EDNRB/EDN3 and Hirschsprung disease type II, Pigm. Cell Res., 2001, vol. 14, no. 3, pp. 161—169. https://doi.org/10.1034/j.1600-0749.2001.140305.x

    Article  CAS  Google Scholar 

  23. Matsushima, Y., Shinkai, Y., Kobayashi, Y., et al., A mouse model of Waardenburg syndrome type 4 with a new spontaneous mutation of the endothelin-B receptor gene, Mamm. Genome, 2002, vol. 13, no. 1, pp. 30—35. https://doi.org/10.1007/s00335-001-3038-2

    Article  CAS  PubMed  Google Scholar 

  24. Xi, Y., Wang, L., Liu, H., et al., A 14-bp insertion in endothelin receptor B-like (EDNRB2) is associated with white plumage in Chinese geese, BMC Genomics, 2020, vol. 21, no. 1, p. 162. https://doi.org/10.1186/s12864-020-6562-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hertwig, P., Neue Mutationen und Kopplungsgruppen bei der Hausmaus, Z. Indukt. Abstamm. Vererbungsl., 1942, vol. 80, pp. 220—246.

    Google Scholar 

  26. Hodgkinson, C.A., Moore, K.J., Nakayama, A., et al., Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein, Cell, 1993, vol. 74, no. 2, pp. 395—404. https://doi.org/10.1016/0092-8674(93)90429-t

    Article  CAS  PubMed  Google Scholar 

  27. Goding, C.R. and Arnheiter, H., MITF—the first 25 years, Genes Dev., 2019, vol. 33, nos. 15—16, pp. 983—1007. https://doi.org/10.1101/gad.324657.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shibahara, S., Takeda, K., Yasumoto, K., et al., Microphthalmia-associated transcription factor (MITF): multiplicity in structure, function, and regulation, J. Invest. Dermatol. Symp. Proc., 2001, vol. 6, no. 1, pp. 99—104. https://doi.org/10.1046/j.0022-202x.2001.00010.x

    Article  CAS  Google Scholar 

  29. Cheli, Y., Ohanna, M., Ballotti, R., and Bertolotto, C., Fifteen-year quest for microphthalmia-associated transcription factor target genes, Pigm. Cell Melanoma Res., 2010, vol. 23, no. 1, pp. 27—40. https://doi.org/10.1111/j.1755-148X.2009.00653.x

    Article  CAS  Google Scholar 

  30. Thomas, A.J. and Erickson, C.A., The making of a melanocyte: the specification of melanoblasts from the neural crest, Pigm. Cell Melanoma Res., 2008, vol. 21, no. 6, pp. 598—610. https://doi.org/10.1111/j.1755-148X.2008.00506.x

    Article  CAS  Google Scholar 

  31. Li, Y., Zhu, X., Yang, L., et al., Expression and network analysis of genes related to melanocyte development in the Silky Fowl and White Leghorn embryos, Mol. Biol. Rep., 2011, vol. 38, no. 2, pp. 1433—1441. https://doi.org/10.1007/s11033-010-0248-2

    Article  CAS  PubMed  Google Scholar 

  32. Wu, C.C., Klaesson, A., Buskas, J., et al., In situ quantification of individual mRNA transcripts in melanocytes discloses gene regulation of relevance to speciation, J. Exp. Biol., 2019, vol. 222, no. 5. jeb194431. https://doi.org/10.1242/jeb.194431

    Article  PubMed  Google Scholar 

  33. Mochii, M., Mazaki, Y., Mizuno, N., et al., Role of Mitf in differentiation and transdifferentiation of chicken pigmented epithelial cell, Dev. Biol., 1998, vol. 193, no. 1, pp. 47—62. https://doi.org/10.1006/dbio.1997.8800

    Article  CAS  PubMed  Google Scholar 

  34. Kawaguchi, N., Ono, T., Mochii, M., and Noda, M., Spontaneous mutation in Mitf gene causes osteopetrosis in silver homozygote quail, Dev. Dyn., 2001, vol. 220, no. 2, pp. 133—140. https://doi.org/10.1002/1097-0177(2000)9999:9999<::AID-DVDY1095>3.0.CO;2-7

    Article  CAS  PubMed  Google Scholar 

  35. Minvielle, F., Bed’hom, B., Coville, J.L., et al., The “silver” Japanese quail and the MITF gene: causal mutation, associated traits and homology with the “blue” chicken plumage, BMC Genet., 2010, vol. 11, no. 15. https://doi.org/10.1186/1471-2156-11-15

  36. Wang, Y., Li, S.-M., Huang, J., et al., Mutations of TYR and MITF genes are associated with plumage colour phenotypes in geese, Asian-Australas. J. Anim. Sci., 2014, vol. 27, no. 6, pp. 778—783. https://doi.org/10.5713/ajas.2013.13350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sultana, H., Seo, D., Choi, N.R., et al., Identification of polymorphisms in MITF and DCT genes and their associations with plumage colors in Asian duck breeds, Asian-Australas. J. Anim. Sci., 2018, vol. 31, no. 2, pp. 180—188. https://doi.org/10.5713/ajas.17.0298

    Article  CAS  PubMed  Google Scholar 

  38. Yang, L., Mo, C., Shen, W., et al., The recessive C locus in the MITF gene plays a key regulatory role in the plumage colour pattern of duck (Anas platyrhynchos), Br. Poult. Sci., 2019, vol. 60, no. 2, pp. 105—108. https://doi.org/10.1080/00071668.2018.1564237

    Article  CAS  PubMed  Google Scholar 

  39. Lin, R., Lin, W., Zhou, S., et al., Integrated analysis of mRNA expression, CpG island methylation, and polymorphisms in the MITF gene in ducks (Anas platyrhynchos), Biomed. Res. Int., 2019, p. 8512467. https://doi.org/10.1155/2019/8512467

  40. Zhou, Z., Li, M., Cheng, H., et al., An intercross population study reveals genes associated with body size and plumage color in ducks, Nat. Commun., 2018, vol. 9, no. 1, p. 2648. https://doi.org/10.1038/s41467-018-04868-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jones, P.A., Functions of DNA methylation: islands, start sites, gene bodies and beyond, Nat. Rev. Genet., 2012, vol. 13, no. 7, pp. 484—492. https://doi.org/10.1038/nrg3230

    Article  CAS  PubMed  Google Scholar 

  42. Kubic, J.D., Young, K.P., Plummer, R.S., et al., Pigmentation PAX-ways: the role of Pax3 in melanogenesis, melanocyte stem cell maintenance, and disease, Pigm. Cell Melanoma Res., 2008, vol. 21, no. 6, pp. 627—645. https://doi.org/10.1111/j.1755-148X.2008.00514.x

    Article  CAS  Google Scholar 

  43. Otręba, M., Miliński, M., Buszman, E., et al., Hereditary hypomelanocytoses: the role of PAX3, SOX10, MITF, SNAI2, KIT, EDN3 and EDNRB genes, Postepy Hig. Med. Dosw., 2013, vol. 67, pp. 1109—1118. https://doi.org/10.5604/17322693.1077722

    Article  Google Scholar 

  44. Chalepakis, G., Goulding, M., Read, A., et al., Molecular basis of splotch and Waardenburg Pax-3 mutations, Proc. Natl. Acad. Sci. U.S.A., 1994, vol. 91, no. 9, pp. 3685—3689. https://doi.org/10.1073/pnas.91.9.3685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ohno, T., Maegawa, T., Katoh, H., et al., A new missense mutation in the paired domain of the mouse Pax3 gene, Exp. Anim., 2017, vol. 66, no. 3, pp. 245—250. https://doi.org/10.1538/expanim.17-0013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wegner, M., Secrets to a healthy Sox life: lessons for melanocytes, Pigm. Cell Res., 2005, vol. 18, no. 2, pp. 74—85. https://doi.org/10.1111/j.1600-0749.2005.00218.x

    Article  CAS  Google Scholar 

  47. Gunnarsson, U., Kerje, S., Bed’hom, B., et al., The dark brown plumage color in chickens is caused by an 8.3-kb deletion upstream of SOX10, Pigm. Cell Melanoma Res., 2011, vol. 24, no. 2, pp. 268—274. https://doi.org/10.1111/j.1755-148X.2011.00825.x

    Article  CAS  Google Scholar 

  48. Domyan, E.T., Guernsey, M.W., Kronenberg, Z., et al., Epistatic and combinatorial effects of pigmentary gene mutations in the domestic pigeon, Curr. Biol., 2014, vol. 24, no. 4, pp. 459—464. https://doi.org/10.1016/j.cub.2014.01.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Domyan, E.T., Guernsey, M.W., Kronenberg, Z., et al., SOX10 regulates multiple genes to direct eumelanin versus pheomelanin production in domestic rock pigeon, Pigm. Cell Melanoma Res., 2019, vol. 32, no. 5, pp. 634—642. https://doi.org/10.1111/pcmr.12778

    Article  CAS  Google Scholar 

  50. Cone, R.D., Lu, D., Koppula, S., et al., The melanocortin receptors: agonists, antagonists, and the hormonal control of pigmentation, Recent Prog. Horm. Res., 1996, vol. 51, pp. 287—317.

    CAS  PubMed  Google Scholar 

  51. Smith, A.G., Box, N.F., Marks, L.H., et al., The human melanocortin-1 receptor locus: analysis of transcription unit, locus polymorphism and haplotype evolution, Gene, 2001, vol. 281, nos. 1—2, pp. 81—94. https://doi.org/10.1016/s0378-1119(01)00791-0

    Article  CAS  PubMed  Google Scholar 

  52. Katritch, V., Cherezov, V., and Stevens, R.C., Structure-function of the G protein-coupled receptor superfamily, Annu. Rev. Pharmacol. Toxicol., 2013, vol. 53, pp. 531—556. https://doi.org/10.1146/annurev-pharmtox-032112-135923

    Article  CAS  PubMed  Google Scholar 

  53. Mundy, N.I., Badcock, N.S., Hart, T., et al., Conserved genetic basis of a quantitative plumage trait involved in mate choice, Science, 2004, vol. 303, no. 5665, pp. 1870—1873. https://doi.org/10.1126/science.1093834

    Article  CAS  PubMed  Google Scholar 

  54. Mundy, N.I., A window on the genetics of evolution: MC1R and plumage colouration in birds, Proc. Biol. Sci., 2005, vol. 272, no. 1573, pp. 1633—1640. https://doi.org/10.1098/rspb.2005.3107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dessinioti, C., Antoniou, C., Katsambas, A., and Stratigos, A.J., Melanocortin 1 receptor variants: functional role and pigmentary associations, Photochem. Photobiol., 2011, vol. 87, no. 5, pp. 978—987. https://doi.org/10.1111/j.1751-1097.2011.00970.x

    Article  CAS  PubMed  Google Scholar 

  56. Baião, P.C., Schreiber, E., and Parker, P.G., The genetic basis of the plumage polymorphism in red-footed boobies (Sula sula): a melanocortin-1 receptor (MC1R) analysis, J. Hered., 2007, vol. 98, no. 4, pp. 287—292. https://doi.org/10.1093/jhered/esm030

    Article  CAS  PubMed  Google Scholar 

  57. Guernsey, M.W., Ritscher, L., Miller, M.A., et al., A Val85Met mutation in melanocortin-1 receptor is associated with reductions in eumelanic pigmentation and cell surface expression in domestic rock pigeons (Columba livia), PLoS One, 2013, vol. 8, no. 8: e74475. https://doi.org/10.1371/journal.pone.0074475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kerje, S., Lind, J., and Schütz, K., Melanocortin 1-receptor (MC1R) mutations are associated with plumage colour in chicken, Anim. Genet., 2003, vol. 34, no. 4, pp. 241—248. https://doi.org/10.1046/j.1365-2052.2003.00991.x

    Article  CAS  PubMed  Google Scholar 

  59. Nadeau, N.J., Minvielle, F., and Mundy, N.I., Association of a Glu92Lys substitution in MC1R with extended brown in Japanese quail (Coturnix japonica), Anim. Genet., 2006, vol. 37, no. 3, pp. 287—289. https://doi.org/10.1111/j.1365-2052.2006.01442.x

    Article  CAS  PubMed  Google Scholar 

  60. Theron, E., Hawkins, K., Bermingham, E., et al., The molecular basis of an avian plumage polymorphism in the wild: a melanocortin-1-receptor point mutation is perfectly associated with the melanic plumage morph of the bananaquit, Coereba flaveola, Curr. Biol., 2001, vol. 11, no. 8, pp. 550—557. https://doi.org/10.1016/s0960-9822(01)00158-0

    Article  CAS  PubMed  Google Scholar 

  61. Cibois, A., Thibault, J.-C., and Pasquet, E., The molecular basis of the plumage colour polymorphism in the Tahiti reed-warbler Acrocephalus caffer, J. Avian Biol., 2012, vol. 43, no. 1, pp. 3—8. https://doi.org/10.1111/j.1600-048X.2011.05546.x

    Article  Google Scholar 

  62. Kageyama, M., Takenouchi, A., Kinoshita, K., et al., The “Extended Brown” plumage color mutant of blue-breasted quail (Coturnix chinensis) is associated with a mutation in the melanocortin 1-receptor gene (MC1R), J. Poult. Sci., 2018, vol. 55, no. 4, pp. 233—238. https://doi.org/10.2141/jpsa.0180006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pointer, M.A. and Mundy, N.I., Testing whether macroevolution follows microevolution: are colour differences among swans (Cygnus) attributable to variation at the MC1R locus?, BMC Evol. Biol., 2008, vol. 8, no. 249. https://doi.org/10.1186/1471-2148-8-249

  64. Gangoso, L., Grande, J.M., Ducrest, A.L., et al., MC1R-dependent, melanin-based colour polymorphism is associated with cell-mediated response in the Eleonora’s falcon, J. Evol. Biol., 2011, vol. 24, no. 9, pp. 2055—2063. https://doi.org/10.1111/j.1420-9101.2011.02336.x

    Article  CAS  PubMed  Google Scholar 

  65. Uy, J.A., Moyle, R.G., Filardi, C.E., and Cheviron, Z.A., Difference in plumage color used in species recognition between incipient species is linked to a single amino acid substitution in the melanocortin-1 receptor, Am. Nat., 2009, vol. 174, no. 2, pp. 244—254. https://doi.org/10.1086/600084

    Article  PubMed  Google Scholar 

  66. San-Jose, L.M., Ducrest, A.L., Ducret, V., et al., Effect of the MC1R gene on sexual dimorphism in melanin-based colorations, Mol. Ecol., 2015, vol. 24, no. 11, pp. 2794—2808. https://doi.org/10.1111/mec.13193

    Article  CAS  PubMed  Google Scholar 

  67. San-Jose, L.M., Ducrest, A.L., Ducret, V., et al., MC1R variants affect the expression of melanocortin and melanogenic genes and the association between melanocortin genes and coloration, Mol. Ecol., 2017, vol. 26, no. 1, pp. 259—276. https://doi.org/10.1111/mec.13861

    Article  CAS  PubMed  Google Scholar 

  68. Yu, W., Wang, C., Xin, Q., et al., Non-synonymous SNPs in MC1R gene are associated with the extended black variant in domestic ducks (Anas platyrhynchos), Anim. Genet., 2013, vol. 44, no. 2, pp. 214—216. https://doi.org/10.1111/j.1365-2052.2012.02377.x

    Article  CAS  PubMed  Google Scholar 

  69. Sultana, H., Seo, D.W., Park, H.B., et al., Identification of MC1R SNPs and their association with plumage colors in Asian duck, J. Poult. Sci., 2017, vol. 54, no. 2, pp. 111—120. https://doi.org/10.5713/ajas.2012.12581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Johnson, J.A., Ambers, A.D., and Burnham, K.K., Genetics of plumage color in the gyrfalcon (Falco rusticolus): analysis of the melanocortin-1 receptor gene, J. Hered., 2012, vol. 103, no. 3, pp. 315—321. https://doi.org/10.1093/jhered/ess023

    Article  CAS  PubMed  Google Scholar 

  71. Bam, S., Hart, L., and Willows-Munro, S., Mc1r genotype and plumage colouration in highly polymorphic jackal buzzards, Buteo rufofuscus, Afr. Zool., 2019, vol. 54, no. 4, pp. 239—242. https://doi.org/10.1080/15627020.2019.1658539

    Article  Google Scholar 

  72. Bourgeois, Y.X., Bertrand, J.A., Thébaud, C., and Milá, B., Investigating the role of the melanocortin-1 receptor gene in an extreme case of microgeographical variation in the pattern of melanin-based plumage pigmentation, PLoS One, 2012, vol. 7, no. 12. e50906. https://doi.org/10.1371/journal.pone.0050906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Vieira, S.N., Araripe, J., Aleixo, A., and do Rêgo, P.S., Plumage polymorphism and variation in the melanocortin-1 receptor gene in the fuscous flycatcher, Cnemotriccus fuscatus (Wied, 1831), Rev. Bras. Ornitol., 2018, vol. 26, pp. 251—257. https://doi.org/10.1007/BF03544439

    Article  Google Scholar 

  74. Ling, M.K., Lagerström, M.C., Fredriksson, R., et al., Association of feather colour with constitutively active melanocortin 1 receptors in chicken, Eur. J. Biochem., 2003, vol. 270, no. 7, pp. 1441—1449. https://doi.org/10.1046/j.1432-1033.2003.03506.x

    Article  CAS  PubMed  Google Scholar 

  75. Dobson, A.E., Schmidt, D.J., and Hughes, J.M., Sequence variation in the melanocortin-1 receptor (MC1R) does not explain continent-wide plumage color differences in the Australian magpie (Cracticus tibicen), J. Hered., 2012, vol. 103, no. 6, pp. 769—780. https://doi.org/10.1093/jhered/ess053

    Article  CAS  PubMed  Google Scholar 

  76. Luna, L.W., Silva, W., Araripe, J., et al., Mutations in the melanocortin-1 receptor (MC1R) gene have no influence on the distinct patterns of melanic plumage found in the manakins of the genus Antilophia (Aves: Pipridae), An. Acad. Bras. Cienc., 2018, vol. 90, no. 3, pp. 2873—2879. https://doi.org/10.1590/0001-3765201820171003

    Article  CAS  PubMed  Google Scholar 

  77. Derelle, R., Kondrashov, F.A., Arkhipov, V.Y., et al., Color differences among feral pigeons (Columba livia) are not attributable to sequence variation in the coding region of the melanocortin-1 receptor gene (MC1R), BMC Res. Notes, 2013, vol. 6, no. 1, p. 310. https://doi.org/10.1186/1756-0500-6-310

    Article  PubMed  PubMed Central  Google Scholar 

  78. Cheviron, Z.A., Hackett, S.J., and Brumfield, R.T., Sequence variation in the coding region of the melanocortin-1 receptor gene (MC1R) is not associated with plumage variation in the blue-crowned manakin (Lepidothrix coronata), Proc. Biol. Sci., 2006, vol. 273, no. 1594, pp. 1613—1618. https://doi.org/10.1098/rspb.2006.3499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Neumann Andersen, G., Nagaeva, O., Mandrika, I., et al., MC1 receptors are constitutively expressed on leucocyte subpopulations with antigen presenting and cytotoxic functions, Clin. Exp. Immunol., 2001, vol. 126, no. 3, pp. 441—446. https://doi.org/10.1046/j.1365-2249.2001.01604.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yoshihara, C., Fukao, A., Ando, K., et al., Elaborate color patterns of individual chicken feathers may be formed by the agouti signaling protein, Gen. Comp. Endocrinol., 2012, vol. 175, no. 3, pp. 495—499. https://doi.org/10.1016/j.ygcen.2011.12.009

    Article  CAS  PubMed  Google Scholar 

  81. Nadeau, N.J., Minvielle, F., Ito, S., et al., Characterization of Japanese quail yellow as a genomic deletion upstream of the avian homolog of the mammalian ASIP (agouti) gene, Genetics, 2008, vol. 178, no. 2, pp. 777—786. https://doi.org/10.1534/genetics.107.077073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Oribe, E., Fukao, A., Yoshihara, C., et al., Conserved distal promoter of the agouti signaling protein (ASIP) gene controls sexual dichromatism in chickens, Gen. Comp. Endocrinol., 2012, vol. 177, no. 2, pp. 231—237. https://doi.org/10.1016/j.ygcen.2012.04.016

    Article  CAS  PubMed  Google Scholar 

  83. Hiragaki, T., Inoue-Murayama, M., Miwa, M., et al., Recessive black is allelic to the yellow plumage locus in Japanese quail and associated with a frameshift deletion in the ASIP gene, Genetics, 2008, vol. 178, no. 2, pp. 771—775. https://doi.org/10.1534/genetics.107.077040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Uy, J.A., Cooper, E.A., Cutie, S., et al., Mutations in different pigmentation genes are associated with parallel melanism in island flycatchers, Proc. Biol. Sci., 2016, vol. 283, no. 1834, p. 20160731. https://doi.org/10.1098/rspb.2016.0731

  85. Robic, A., Morisson, M., Leroux, S., et al., Two new structural mutations in the 5' region of the ASIP gene cause diluted feather color phenotypes in Japanese quail, Genet. Sel. Evol., 2019, vol. 51, no. 1, no. 12. https://doi.org/10.1186/s12711-019-0458-6

  86. Yang, J., Liu, X., Zhang, J., et al., Molecular cloning and biochemical analysis of tyrosinase from the crested ibis in China, Biochem. Genet., 2012, vol. 50, nos. 11—12, pp. 936—945. https://doi.org/10.1007/s10528-012-9533-1

    Article  CAS  PubMed  Google Scholar 

  87. Chang, C.M., Coville, J.L., Coquerelle, G., et al., Complete association between a retroviral insertion in the tyrosinase gene and the recessive white mutation in chickens, BMC Genomics, 2006, vol. 7, no. 19. https://doi.org/10.1186/1471-2164-7-19

  88. Yu, S., Liao, J., and Tang, M.A., Functional single nucleotide polymorphism in the tyrosinase gene promoter affects skin color and transcription activity in the black-boned chicken, Poult. Sci., 2017, vol. 96, no. 11, pp. 4061—4067. https://doi.org/10.3382/ps/pex217

    Article  CAS  PubMed  Google Scholar 

  89. Xu, Y., Zhang, X.H., and Pang, Y.Z., Association of tyrosinase (TYR) and tyrosinase-related protein 1 (TYRP1) with melanic plumage color in Korean quails (Coturnix coturnix), Asian-Australas. J. Anim. Sci., 2013, vol. 26, no. 11, pp. 1518—1522. https://doi.org/10.5713/ajas.2013.13162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Li, S., Wang, C., Yu, W., et al., Identification of genes related to white and black plumage formation by RNA-Seq from white and black feather bulbs in ducks, PLoS One, 2012, vol. 7, no. 5. e36592. https://doi.org/10.1371/journal.pone.0036592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tobita-Teramoto, T., Jang, G.Y., Kino, K., et al., Autosomal albino chicken mutation (ca/ca) deletes hexanucleotide (-deltaGACTGG817) at a copper-binding site of the tyrosinase gene, Poult. Sci., 2000, vol. 79, no. 1, pp. 46—50. https://doi.org/10.1093/ps/79.1.46

    Article  CAS  PubMed  Google Scholar 

  92. Yu, S., Wang, G., Liao, J., and Tang, M., Five alternative splicing variants of the TYR gene and their different roles in melanogenesis in the Muchuan black-boned chicken, Br. Poult. Sci., 2019, vol. 60, no. 1, pp. 8—14. https://doi.org/10.1080/00071668.2018.1533633

    Article  CAS  PubMed  Google Scholar 

  93. Liang, Z., Wang, C., Yu, H., et al., Molecular cloning, characterization and expression analysis of duck tyrosinase-related protein-1, J. Anim. Vet. Adv., 2010, vol. 9, no. 16, pp. 2102—2108. https://doi.org/10.3923/javaa.2010.2102.2108

    Article  CAS  Google Scholar 

  94. Nadeau, N.J., Mundy, N.I., Gourichon, D., et al., Association of a single-nucleotide substitution in TYRP1 with roux in Japanese quail (Coturnix japonica), Anim. Genet., 2007, vol. 38, no. 6, pp. 609—613. https://doi.org/10.1111/j.1365-2052.2007.01667.x

    Article  CAS  PubMed  Google Scholar 

  95. Li, J., Bed’hom, B., Marthey, S., et al., A missense mutation in TYRP1 causes the chocolate plumage color in chicken and alters melanosome structure, Pigm. Cell Melanoma Res., 2019, vol. 32, no. 3, pp. 381—390. https://doi.org/10.1111/pcmr.12753

    Article  CAS  Google Scholar 

  96. Cortimiglia, C., Castiglioni, B., Pizzi, F., et al., Involvement of tyrosinase-related protein 1 gene in the light brown plumage phenotype of Falco cherrug, Anim. Genet., 2017, vol. 48, no. 1, pp. 125—126. https://doi.org/10.1111/age.12506

    Article  CAS  PubMed  Google Scholar 

  97. Zhang, X.D., Wang, H.H., Zhang, C.X., et al., Analysis of skin color change and related gene expression after crossing of Dongxiang black chicken and ISA layer, Genet. Mol. Res., 2015, vol. 14, no. 3, pp. 11551—11561. https://doi.org/10.4238/2015

    Article  PubMed  Google Scholar 

  98. Costin, G.E., Valencia, J.C., Vieira, W.D., et al., Tyrosinase processing and intracellular trafficking is disrupted in mouse primary melanocytes carrying the underwhite (uw) mutation: a model for oculocutaneous albinism (OCA) type 4, J. Cell Sci., 2003, vol. 116, no. 15, pp. 3203—3212. https://doi.org/10.1242/jcs.00598

    Article  CAS  PubMed  Google Scholar 

  99. Dooley, C., Schwarz, H., Mueller, K., et al., Slc45a2 and V-ATPase are regulators of melanosomal pH homeostasis in zebrafsh, providing a mechanism for human pigment evolution and disease, Pigm. Cell Melanoma Res., 2013, vol. 26, no. 2, pp. 205—217. https://doi.org/10.1111/pcmr.12053

    Article  CAS  Google Scholar 

  100. Gunnarsson, U., Hellström, A.R., Tixier-Boichard, M., et al., Mutations in SLC45A2 cause plumage color variation in chicken and Japanese quail, Genetics, 2007, vol. 175, no. 2, pp. 867—877. https://doi.org/10.1534/genetics.106.063107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Xu, X., Dong, G.X., Schmidt-Küntzel, A., et al., The genetics of tiger pelage color variations, Cell Res., 2017, vol. 27, no. 7, pp. 954—957. https://doi.org/10.1038/cr.2017.32

    Article  PubMed  PubMed Central  Google Scholar 

  102. Galván, I., Inácio, Â., Romero-Haro, A.A., and Alonso-Alvarez, C., Adaptive downregulation of pheomelanin-related SLC7A11 gene expression by environmentally induced oxidative stress, Mol. Ecol., 2017, vol. 26, no. 3, pp. 849—858. https://doi.org/10.1111/mec.13952

    Article  CAS  PubMed  Google Scholar 

  103. Rodríguez-Martínez, S., Márquez, R., Inácio, Â., and Galván, I., Changes in melanocyte RNA and DNA methylation favour pheomelanin synthesis and may avoid systemic oxidative stress after dietary cysteine supplementation in birds, Mol. Ecol., 2019, vol. 28, no. 5, pp. 1030—1042. https://doi.org/10.1111/mec.15024

    Article  CAS  PubMed  Google Scholar 

  104. Liu, X.F., Luo, J., Hu, X.X., et al., Repression of Slc24a5 can reduce pigmentation in chicken, Front. Biosci., 2011, vol. 3, no. 1, pp. 158—165. https://doi.org/10.2741/e229

    Article  Google Scholar 

  105. Bellono, N.W., Escobar, I.E., Lefkovith, A.J., et al., An intracellular anion channel critical for pigmentation, Elife, 2014, vol. 3. e04543. https://doi.org/10.7554/eLife.04543

    Article  PubMed  PubMed Central  Google Scholar 

  106. Abolins-Abols, M., Kornobis, E., Ribeca, P., et al., Differential gene regulation underlies variation in melanic plumage coloration in the dark-eyed junco (Junco hyemalis), Mol. Ecol., 2018, vol. 27, no. 22, pp. 4501—4515. https://doi.org/10.1111/mec.14878

    Article  CAS  PubMed  Google Scholar 

  107. Yu, S., Wang, G., Liao, J., et al., Transcriptome profile analysis of mechanisms of black and white plumage determination in black-bone chicken, Cell. Physiol. Biochem., 2018, vol. 46, no. 6, pp. 2373—2384. https://doi.org/10.1159/000489644

    Article  CAS  PubMed  Google Scholar 

  108. Theos, A.C., Truschel, S.T., Raposo, G., and Marks, M.S., The Silver locus product Pmel17/ gp100/Silv/ME20: controversial in name and function, Pigm. Cell Res., 2005, vol. 18, no. 5, pp. 322—336. https://doi.org/10.1111/j.1600-0749.2005.00269.x

    Article  CAS  Google Scholar 

  109. Kerje, S., Sharma, P., Gunnarsson, U., et al., The Dominant white, Dun and Smoky color variants in chicken are associated with insertion/deletion polymorphisms in the PMEL17 gene, Genetics, 2004, vol. 168, no. 3, pp. 1507—1518. https://doi.org/10.1534/genetics.104.027995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ishishita, S., Takahashi, M., Yamaguchi, K., et al., Nonsense mutation in PMEL is associated with yellowish plumage colour phenotype in Japanese quail, Sci. Rep., 2018, vol. 8, p. 16732. https://doi.org/10.1038/s41598-018-34827-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Karlsson, A.C., Kerje, S., Andersson, L., and Jensen, P., Genotype at the PMEL17 locus affects social and explorative behaviour in chickens, Br. Poult. Sci., 2010, vol. 51, no. 2, pp. 170—177. https://doi.org/10.1080/00071661003745802

    Article  CAS  PubMed  Google Scholar 

  112. Mayerson, P.L. and Brumbaugh, J.A., Lavender, a chick melanocyte mutant with defective melanosome translocation: a possible role for 10 nm filaments and microfilaments but not microtubules, J. Cell Sci., 1981, vol. 51, pp. 25—51.

    Article  CAS  Google Scholar 

  113. Minvielle, F., Gourichon, D., and Monvoisin, J.L., Testing homology of loci for two plumage colors, “lavender” and “recessive white,” with chicken and Japanese quail hybrids, J. Hered., 2002, vol. 93, no. 1, pp. 73—76. https://doi.org/10.1093/jhered/93.1.73

    Article  CAS  PubMed  Google Scholar 

  114. Vaez, M., Follett, S.A., Bed’hom, B., et al., A single point-mutation within the melanophilin gene causes the lavender plumage colour dilution phenotype in the chicken, BMC Genet., 2008, vol. 9, no. 7. https://doi.org/10.1186/1471-2156-9-7

  115. Bed’hom, B., Vaez, M., Coville, J.L., et al., The lavender plumage colour in Japanese quail is associated with a complex mutation in the region of MLPH that is related to differences in growth, feed consumption and body temperature, BMC Genomics, 2012, vol. 13, no. 442. https://doi.org/10.1186/1471-2164-13-442

  116. Lin, S.J., Foley, J., Jiang, T.X., et al., Topology of feather melanocyte progenitor niche allows complex pigment patterns to emerge, Science, 2013, vol. 340, no. 6139, pp. 1442—1446. https://doi.org/10.1126/science.1230374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Oh, J.W., Lin, S.J., and Plikus, M.V., Regenerative metamorphosis in hairs and feathers: follicle as a programmable biological printer, Exp. Dermatol., 2015, vol. 24, no. 4, pp. 262—264. https://doi.org/10.1111/exd.12627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Schwochow Thalmann, D., Ring, H., Sundström, E., et al., The evolution of sex-linked barring alleles in chickens involves both regulatory and coding changes in CDKN2A, PLoS Genet., 2017, vol. 13, no. 4. e1006665. https://doi.org/10.1371/journal.pgen.1006665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Haupaix, N., Curantz, C., Bailleul, R., et al., The periodic coloration in birds forms through a prepattern of somite origin, Science, 2018, vol. 361, no. 6408. eaar4777. https://doi.org/10.1126/science.aar4777

  120. Inaba, M., Jiang, T.X., Liang, Y.C., et al., Instructive role of melanocytes during pigment pattern formation of the avian skin, Proc. Natl. Acad. Sci. U.S.A., 2019, vol. 116, no. 14, pp. 6884—6890. https://doi.org/10.1073/pnas.1816107116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Gluckman, T.L. and Mundy, N.I., The differential expression of MC1R regulators in dorsal and ventral quail plumages during embryogenesis: implications for plumage pattern formation, PLoS One, 2017, vol. 12, no. 3. e0174714. https://doi.org/10.1371/journal.pone.0174714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Wang, S., Rohwer, S., de Zwaan, D.R., et al., Selection on a pleiotropic color gene block underpins early differentiation between two warbler species, bioRxiv, 2019, article number 853390. https://doi.org/10.1101/853390

  123. Poelstra, J.W., Vijay, N., Bossu, C.M., et al., The genomic landscape underlying phenotypic integrity in the face of gene flow in crows, Science, 2014, vol. 344, no. 6190, pp. 1410—1414. https://doi.org/10.1126/science.1253226

    Article  CAS  PubMed  Google Scholar 

  124. Mao, H., Wang, X., Fan, Y., et al., Whole-genome SNP data unravel population structure and signatures of selection for black plumage of indigenous chicken breeds from Jiangxi province, China, Anim. Genet., 2019, vol. 50, no. 5, pp. 475—483. https://doi.org/10.1111/age.12827

    Article  CAS  PubMed  Google Scholar 

  125. Knief, U., Bossu, C.M., Saino, N., et al., Epistatic mutations under divergent selection govern phenotypic variation in the crow hybrid zone, Nat. Ecol. Evol., 2019, vol. 3, no. 4, pp. 570—576. https://doi.org/10.1038/s41559-019-0847-9

    Article  PubMed  PubMed Central  Google Scholar 

  126. Toews, D.P., Taylor, S.A., Vallender, R., et al., Plumage genes and little else distinguish the genomes of hybridizing warblers, Curr. Biol., 2016, vol. 26, no. 17, pp. 2313—2318. https://doi.org/10.1016/j.cub.2016.06.034

    Article  CAS  PubMed  Google Scholar 

  127. Bourgeois, Y.X., Delahaie, B., Gautier, M., et al., A novel locus on chromosome 1 underlies the evolution of a melanic plumage polymorphism in a wild songbird, R. Soc. Open Sci., 2017, vol. 4, no. 2, p. 160805. https://doi.org/10.1098/rsos.160805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Campagna, L., Repenning, M., Silveira, L.F., et al., Repeated divergent selection on pigmentation genes in a rapid finch radiation, Sci. Adv., 2017, vol. 3, no. 5. e1602404. https://doi.org/10.1126/sciadv.1602404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Toomey, M.B., Marques, C.I., Andrade, P., et al., A non-coding region near follistatin controls head colour polymorphism in the Gouldian finch, Proc. Biol. Sci., 2018, vol. 285, no. 1888, article number 20181788. https://doi.org/10.1098/rspb.2018.1788

  130. Kim, K.W., Jackson, B.C., Zhang, H., et al., Genetics and evidence for balancing selection of a sex-linked colour polymorphism in a songbird, Nat. Commun., 2019, vol. 10, no. 1, p. 1852. https://doi.org/10.1038/s41467-019-09806-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Vickrey, A.I., Bruders, R., Kronenberg, Z., et al., Introgression of regulatory alleles and a missense coding mutation drive plumage pattern diversity in the rock pigeon, Elife, 2018, vol. 7. e34803. https://doi.org/10.7554/eLife.34803

    Article  PubMed  PubMed Central  Google Scholar 

  132. Stryjewski, K.F. and Sorenson, M.D., Mosaic genome evolution in a recent and rapid avian radiation, Nat. Ecol. Evol., 2017, vol. 1, no. 12, pp. 1912—1922. https://doi.org/10.1038/s41559-017-0364-7

    Article  PubMed  Google Scholar 

  133. Lamichhaney, S., Fan, G., Widemo, F., et al., Structural genomic changes underlie alternative reproductive strategies in the ruff (Philomachus pugnax), Nat. Genet., 2016, vol. 48, no. 1, pp. 84—88. https://doi.org/10.1038/ng.3430

    Article  CAS  PubMed  Google Scholar 

  134. Tuttle, E.M., Bergland, A.O., Korody, M.L., et al., Divergence and functional degradation of a sex chromosome-like supergene, Curr. Biol., 2016, vol. 26, no. 3, pp. 344—350. https://doi.org/10.1016/j.cub.2015.11.069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Poelstra, J.W., Vijay, N., Hoeppner, M.P., and Wolf, J.B., Transcriptomics of colour patterning and coloration shifts in crows, Mol. Ecol., 2015, vol. 24, no. 18, pp. 4617—4628. https://doi.org/10.1111/mec.13353

    Article  CAS  PubMed  Google Scholar 

  136. Wang, X., Li, D., Song, S., et al., Combined transcriptomics and proteomics forecast analysis for potential genes regulating the Columbian plumage color in chickens, PLoS One, 2019, vol. 14, no. 11. e0210850. https://doi.org/10.1371/journal.pone.0210850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Skoglund, P. and Höglund, J., Sequence polymorphism in candidate genes for differences in winter plumage between Scottish and Scandinavian willow grouse (Lagopus lagopus), PLoS One, 2010, vol. 5, no. 4. e10334. https://doi.org/10.1371/journal.pone.0010334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Bourgeois, Y.X., Bertrand, J.A., Delahaie, B., et al., Candidate gene analysis suggests untapped genetic complexity in melanin-based pigmentation in birds, J. Hered., 2016, vol. 107, no. 4, pp. 327—335. https://doi.org/10.1093/jhered/esw017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. San-Jose, L.M. and Roulin, A., Genomics of coloration in natural animal populations, Philos. Trans. R. Soc., B, 2017, vol. 372, no. 1724, p. 20160337. https://doi.org/10.1098/rstb.2016.0337

  140. Mackay, T.F., The genetic architecture of quantitative traits, Annu. Rev. Genet., 2001, vol. 35, pp. 303—339. https://doi.org/10.1146/annurev.genet.35.102401.090633

    Article  CAS  PubMed  Google Scholar 

  141. Dembeck, L.M., Huang, W., Magwire, M.M., et al., Genetic architecture of abdominal pigmentation in Drosophila melanogaster, PLoS Genet., 2015, vol. 11, no. 5. e1005163. https://doi.org/10.1371/journal.pgen.1005163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Kardos, M., Husby, A., McFarlane, S.E., et al., Whole-genome resequencing of extreme phenotypes in collared flycatchers highlights the difficulty of detecting quantitative trait loci in natural populations, Mol. Ecol. Resour., 2016, vol. 16, no. 3, pp. 727—741. https://doi.org/10.1111/1755-0998.12498

    Article  CAS  PubMed  Google Scholar 

  143. Galván, I. and Solano, F., Bird integumentary melanins: biosynthesis, forms, function and evolution, Int. J. Mol. Sci., 2016, vol. 17, no. 4, p. 520. https://doi.org/10.3390/ijms17040520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author thanks Yu.N. Zhuravlev, S.V. Shedko, and M.V. Pavlenko for critically reading the manuscript and helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Kulikova.

Ethics declarations

Conflict of interest. The author declares that she has no conflicts of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by N. Maleeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulikova, I.V. Molecular Mechanisms and Gene Regulation of Melanic Plumage Coloration in Birds. Russ J Genet 57, 893–911 (2021). https://doi.org/10.1134/S102279542108007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102279542108007X

Keywords:

Navigation