Skip to main content
Log in

Genetic Analysis of Turkish lynx (Lynx lynx) Based on Mitochondrial DNA Sequences

  • ANIMAL GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Genetic variability and phylogenetic relationships of the Eurasian lynx (Lynx lynx) have been reported by various researchers from species’ range. As genetic data of Turkish lynx comes from a single genetic study that only contains limited number of lynx samples from the Anatolian part of Turkey, there is still a lack of genetic information for the Eurasian lynx population distributed in Turkey. In this study, mitochondrial Cyt b (1140 bp) and COI (630 bp) sequences were obtained from eight Anatolian samples of the Eurasian lynx. The Anatolian lynx sequences were compared to those of conspecific populations published in GenBank. We found two COI (630 bp) and four Cyt b (1140 bp) haplotypes among the eight Anatolian lynx sequences. Despite the limited number of the Anatolian lynx sequences, Bayesian, Maximum Likelihood, Neighbor-Joining and Network analyses revealed that there was a significant genetic differentiation in the Eurasian lynx, in that at least there were two main mitochondrial lineages within the sampling area. Also, the present study suggested that the Anatolian lynx might have a relatively high genetic variability despite the scarce samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Status and Conservation of the Eurasian Lynx (Lynx lynx) in Europe in 2001, von Arx, M., Breitenmoser-Würsten, C., Zimmermann, F., and Breitenmoser, U., Eds., Muri, Switzerland: KORA, 2004.

  2. Wilson, D.E. and Reeder, D.M., Mammal Species of the World: A Taxonomic and Geographic Reference, Baltimore: Johns Hopkins University Press, 2005, 3rd ed.

    Google Scholar 

  3. Breitenmoser, U., Breitenmoser-Würsten, C., Lanz, T., et al., Lynx lynx (errata version published in 2017), The IUCN Red List of Threatened Species2015. eT12519A121707666. Accessed April 25, 2018.

  4. Aulagnier, S., Haffner, P., Mitchell-Jones, A.J., et al., Mammals of Europe, North Africa and the Middle East, London: A. and C. Black, 2009.

    Google Scholar 

  5. Hellborg, K., Walker, C.W., Rueness, E.K., et al., Differentiation and levels of genetic variation in northern European lynx (Lynx lynx) populations revealed by microsatellites and mitochondrial DNA analysis, Conserv. Genet., 2002, vol. 3, no. 2, pp. 97—111.

    Article  CAS  Google Scholar 

  6. Johnson, W.E., Godoy, J.A., Palomares, F., et al., Phylogenetic and phylogeographic analysis of Iberian lynx populations, J. Hered., 2004, vol. 95, no. 1, pp. 19—28.

    Article  CAS  PubMed  Google Scholar 

  7. Gugolz, D., Bernasconi, M.V., Breitenmoser-Würsten, C., and Wandeler, P., Historical DNA reveals the phylogenetic position of the extinct Alpine lynx, J. Zool., 2008, vol. 275, no. 2, pp. 201—208.

    Article  Google Scholar 

  8. Ratkiewicz, M., Matosiuk, M., Kowalczyk, R., et al., High levels of population differentiation in Eurasian lynx at the edge of the species' western range in Europe revealed by mitochondrial DNA analyses, Anim. Conserv., 2012, vol. 15, no. 6, pp. 603—612.

    Article  Google Scholar 

  9. Ratkiewicz, M., Matosiuk, M., Saveljev, A.P., et al., Long-range gene flow and the effects of climatic and ecological factors on genetic structuring in a large, solitary carnivore: the Eurasian lynx, PLoS One, 2014, vol. 9, no. 12. e115160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sindičić, M., Gomerčić, T., Galov, A., Repetitive sequences in Eurasian lynx (Lynx lynx L.) mitochondrial DNA control region, Mitochondrial DNA, 2012, vol. 23, no. 3, pp. 201—207.

    Article  CAS  PubMed  Google Scholar 

  11. Rueness, E.K., Naidenko, S., Trosvik, P., and Stenseth, N.C., Large-scale genetic structuring of a widely distributed carnivore—the Eurasian lynx (Lynx lynx), PLoS One, 2014, vol. 9, no. 4. e93675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ning, Y., Liu, H., Jiang, G., and Ma, J., Phylogenetic relationship of Eurasian lynx (Lynx lynx) revealed by complete mitochondrial genome, Mitochondrial DNA, Part A, 2016, vol. 27, no. 5, pp. 3477—3478.

    Article  CAS  Google Scholar 

  13. Cömert, N., Carlı, O., and Dinçtürk, H.B., The missing lynx of Eurasia at its southern edge: a connection to the critically endangered Balkan lynx, Mitochondrial DNA, Part A, 2018. https://doi.org/10.1080/24701394.2018.1445240

  14. Rueness, E.K., Jorde, P.E., Hellborg, L., et al., Cryptic population structure in a large, mobile mammalian predator: the Scandinavian lynx, Mol. Ecol., 2003, vol. 12, no. 10, pp. 2623—2633.

    Article  CAS  PubMed  Google Scholar 

  15. Bull, J.K., Heurich, M., Saveljev, A.P., et al., The effect of reintroductions on the genetic variability in Eurasian lynx populations: the cases of Bohemian–Bavarian and Vosges–Palatinian populations, Conserv. Genet., 2016, vol. 17, no. 5, pp. 1229—1234.

    Article  Google Scholar 

  16. Wang, X., Wei, K., Zhang, Z., et al., Major histocompatibility complex class II DRB exon-2 diversity of the Eurasian lynx (Lynx lynx) in China, J. Nat. Hist., 2009, vol. 43, nos. 3—4, pp. 245—257.

    Article  Google Scholar 

  17. Can, Ö.E., Status, Conservation and Management of Large Carnivores in Turkey, Strasbourg: Convention on the Conservation of European Wildlife and Natural Habitats, 2004.

    Google Scholar 

  18. Kryštufek, B. and Vohralik, V., Mammals of Turkey and Cyprus: Rodentia II: Cricetinae, Muridae, Spalacidae, Calomyscidae, Capromyidae, Hystricidae, Castoridae, Koper: Knjiznica Annales Majora, 2009, 1st ed.

    Google Scholar 

  19. Albayrak, İ., New record of Lynx lynx (L., 1758) in Turkey (Mammalia: Carnivora), Tr. J. Zool., 2012, vol. 36, no. 6, pp. 814—819.

    Google Scholar 

  20. Chynoweth, M.W., Çoban, E., and Şekercioğlu, Ç.H., Conservation of a new breeding population of Caucasian lynx (Lynx lynx dinniki) in eastern Turkey, Tr.J. Zool., 2015, vol. 39, no. 3, pp. 541—543.

    Google Scholar 

  21. Cooperation in the European Mountains: 2: The Caucasus, Price, M.F., Ed., Gland, Switzerland: IUCN, 2000.

    Google Scholar 

  22. Baskaya, S. and Bilgili, E., Does the leopard Panthera pardus still exist in the Eastern Karadeniz Mountains of Turkey?, Oryx, 2004, vol. 38, no. 2, pp. 228—232.

    Article  Google Scholar 

  23. Can, Ö.E., Large Carnivores in Turkey, Species 38, Quebec: World Conservation Union, 2002.

    Google Scholar 

  24. Johnson, K., The status of mammalian carnivores in Turkey, Endangered Species UPDATE, 2002, vol. 19, no. 6, pp. 232—237.

    Google Scholar 

  25. Johnson, K., Species at risk status and distribution of the leopard (Panthera pardus) in Turkey and the Caucasus Mountains, Endangered Species UPDATE, 2003, vol. 20, no. 3, pp. 107—122.

    Google Scholar 

  26. Giannatos, G., Albayrak, T., and Erdogan, A., Status of the caracal in protected areas in south-western Turkey, CATnews, 2006, no. 45, pp. 23—24.

  27. De Marinis, A. and Masseti, M., Mammalian fauna of the Temessos National Park, Turkey, Animal Biodiversity in the Middle East (Proc. First Middle Eastern Biodiversity Congress, Aqaba, Jordan, 20–23 October 2008), Neubert, E., Amr, Z., Taiti, S., and Gümüs, B., Eds., ZooKeys, 2009, no. 31, pp. 221—228.

  28. Ambarlı, H., Mengüllüoğlu, D., and Bilgin, C.C., First camera trap pictures of Eurasian lynx from Turkey, CATnews, 2010, no. 52, p. 32.

  29. Ucarli, Y., Usability of large carnivore as a keystone species in Eastern Black Sea Region, Turkey, Afr. J. Biotechnol., 2011, vol. 10, no. 11, pp. 2032—2036.

    Google Scholar 

  30. Albayrak, T., Giannatos, G., and Kabasakal, B., Carnivore and ungulate populations in the Beydağları Mountains (Antalya, Turkey): border region between Asia and Europe, Pol. J. Ecol., 2012, vol. 60, no. 2, pp. 419—428.

    Google Scholar 

  31. Avgan, A., Zimmermann, F., Güntert, M., et al., The first density estimation of an isolated Eurasian lynx population in southwest Asia, Wildlife Biol., 2014, vol. 20, no. 4, pp. 217—221.

    Article  Google Scholar 

  32. Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R., DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates, Mol. Mar. Biol. Biotechnol., 1994, vol. 3, no. 5, pp. 294—299.

    CAS  PubMed  Google Scholar 

  33. Irwin, D.M., Kocher, T.D., and Wilson, A.C., Evolution of cytochrome b gene of mammals, J. Mol. Evol., 1991, vol. 32, no. 2, pp. 128—144.

    Article  CAS  PubMed  Google Scholar 

  34. Koepfli, K.P. and Wayne, R.K., Phylogenetic relationships of otters (Carnivora; Mustelidae) based on mitochondrial cytochrome b sequences, J. Zool., 1998, vol. 246, no. 4, pp. 401—416.

    Article  Google Scholar 

  35. Katoh, K., Misawa, K., Kuma, K., and Miyata, T., MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform, Nucleic Acids Res., 2002, vol. 30, no. 14, pp. 3059—3066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Librado, P. and Rozas, J., DnaSP v5, a software for comprehensive analysis of DNA polymorphism data, Bioinformatics, 2009, vol. 25, no. 11, pp. 1451—1452.

    Article  CAS  PubMed  Google Scholar 

  37. Kumar, S., Stecher, G., and Tamura, K., MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets, Mol. Biol. Evol., 2016, vol. 33, no. 7, pp. 1870—1874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kimura, M., A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide substitutions, J. Mol. Evol., 1980, vol. 16, no. 2, pp. 111—120.

    Article  CAS  PubMed  Google Scholar 

  39. Darriba, D., Taboada, G.L., Doallo, R., and Posada, D., jModelTest 2: more models, new heuristics and parallel computing, Nat. Methods, 2012, vol. 9, no. 8, p. 772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ronquist, F., Teslenko, M., Van Der Mark, P., et al., and Huelsenbeck, J.P., MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space, Syst. Biol., 2012, vol. 61, no. 3, pp. 539—542.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Rambaut, A., FigTree: Tree Figure Drawing Tool, Version 1.3.1, Institute of Evolutionary Biology, University of Edinburgh, 2009.

    Google Scholar 

  42. Wei, L., Wu, X., Zhu, L., and Jiang, Z., Mitogenomic analysis of the genus Panthera,Sci. China, Life Sci., 2011, vol. 54, no. 10, pp. 917—930.

    Article  CAS  Google Scholar 

  43. Zhang, W., Yue, B., Wang, X., et al., Analysis of variable sites between two complete South China tiger (Panthera tigris amoyensis) mitochondrial genomes, Mol. Biol. Rep., 2011, vol. 38, no. 7, pp. 4257—4264.

    Article  CAS  PubMed  Google Scholar 

  44. Bandelt, H.J., Forster, P., and Röhl, A., Median-joining networks for inferring intraspecific phylogenies, Mol. Phylogenet. Evol., 1999, vol. 16, no. 1, pp. 37—48.

    Article  CAS  Google Scholar 

  45. Spong, G., and Hellborg, L., A near-extinction event in lynx: do microsatellite data tell the tale?, Conserv. Ecol., 2002, vol. 6, no. 1, p. 15.

    Article  Google Scholar 

  46. Schmidt, K., Kowalczyk, R., Ozolins, J., et al., Genetic structure of the Eurasian lynx population in north-eastern Poland and the Baltic States, Conserv. Genet., 2009, vol. 10, no. 2, pp. 497—501.

    Article  Google Scholar 

  47. Schmidt, K., Ratkiewicz, K., and Konopiński, M.K., The importance of genetic variability and population differentiation in the Eurasian lynx Lynx lynx for conservation, in the context of habitat and climate change, Mamm. Rev., 2011, vol. 41, no. 2, pp. 112—124.

    Article  Google Scholar 

  48. Sunnucks, P., Efficient genetic markers for population biology, Trends Ecol. Evol., 2000, vol. 15, no. 5, pp. 199—203.

    Article  CAS  PubMed  Google Scholar 

  49. Perry, E.A., Carr, S.M., Bartlett, S.E., and Davidson, W.S., A phylogenetic perspective on the evolution of reproductive behavior in pagophlis seals of the northwest Atlantic as indicated by DNA sequences, J. Mammal., 1995, vol. 76, no. 1, pp. 22—31.

    Article  Google Scholar 

  50. Taberlet, P., Fumagalli, L., Wust-Sauci, A.G., and Cosson, J.F., Comparative phylogeography and postglacial colonization routes in Europe, Mol. Ecol., 1998, vol. 7, no. 4, pp. 453—464.

    Article  CAS  PubMed  Google Scholar 

  51. Rokas, A., Atkinson, R.J., Webster, L.M.I., et al., Out of Anatolia: longitudinal gradients in genetic diversity support an eastern origin for a circum-Mediterranean oak gallwasp Andricus quercustozae,Mol. Ecol., 2003, vol. 12, no. 8, pp. 2153—2174.

    Article  CAS  PubMed  Google Scholar 

  52. Gündüz, İ., Jaarola, M., Tez, C., et al., Multigenic and morphometric differentiation of ground squirrels (Spermophilus, Scuiridae, Rodentia) in Turkey, with a description of a new species, Mol. Phylogenet. Evol., 2007, vol. 43, no. 3, pp. 916—935.

    Article  CAS  PubMed  Google Scholar 

  53. Fritz, U., Ayaz, D., Hundsdörfer, A.K., et al., Mitochondrial diversity of European pond turtles (Emys orbicularis) in Anatolia and the Ponto-Caspian Region: multiple old refuges, hotspot of extant diversification and critically endangered endemics, Org. Divers. Evol., 2009, vol. 9, no. 2, pp. 100—114.

    Article  Google Scholar 

  54. Stamatis, C., Suchentrunk, F., Moutou, K.A., et al., Phylogeography of the brown hare (Lepus europaeus) in Europe: a legacy of south-eastern Mediterranean refugia?, J. Biogeog., 2009, vol. 36, no. 3, pp. 515—528.

    Article  Google Scholar 

  55. Akın, C., Bilgin, C.C., Beerli, P., et al., Phylogeographic patterns of genetic diversity in eastern Mediterranean water frogs were determined by ecological processes and climate change in the Late Cenozoic, J. Biogeogr., 2010, vol. 37, no. 11, pp. 2111—2124.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Perktaş, U., Barrowclough, G.F., and Groth, J.G., Phylogeography and species limits in the green woodpecker complex (Aves: Picidae): multiple Pleistocene refugia and range expansion across Europe and Near East, Biol. J. Linn. Soc., 2011, vol. 104, no. 3, pp. 710—723.

    Article  Google Scholar 

  57. Gür, H., The effects of the Late Quaternary glacial-interglacial cycles on Anatolian ground squirrels: range expansion during the glacial periods?, Biol. J. Linn. Soc., 2013, vol. 109, no. 1, pp. 19—32.

    Article  Google Scholar 

  58. İbiş, O., Tez, C., and Özcan, S., Phylogenetic status of the Turkish red fox (Vulpes vulpes), based on partial sequences of the mitochondrial cytochrome b gene, Vert. Zool., 2014, vol. 64, no. 2, pp. 273—284.

    Google Scholar 

  59. İbiş, O., Aksöyek, E., Özcan, S., and Tez, C., A preliminary phylogenetic analysis of golden jackals (Canis aureus) (Canidae: Carnivora: Mammalia) from Turkey based on mitochondrial D-loop sequences, Vert. Zool., 2015, vol. 65, no. 3, pp. 391—397.

    Google Scholar 

  60. Korkmaz, E.M., Lunt, D.H., Çıplak, B., et al., The contribution of Anatolia to European phylogeography: the centre of origin of the meadow grasshopper, Chorthippus parallelus,J. Biogeog., 2014, vol. 41, no. 9, pp. 1793—1805.

    Article  Google Scholar 

  61. Bilgin, R., Back to the suture: the distribution of intraspecific genetic diversity in and around Anatolia, Int. J. Mol. Sci., 2011, vol. 12, no. 6, pp. 4080—4103.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Şekercioğlu, Ç.H., Anderson, S., Akçay, E., et al., Turkey’s globally important biodiversity in crisis, Biol. Conserv., 2011, vol. 144, no. 12, pp. 2752—2769.

    Article  Google Scholar 

  63. Aksöyek, E., İbiş, O., Özcan, S., et al., DNA barcoding of three species (Canis aureus, Canis lupus, Vulpes vulpes) of Canidae, Mitochondrial DNA, Part A, 2017, vol. 28, no. 5, pp. 747—755.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by the Scientific Research Fund at Erciyes University (Project Nr: FHD-2016-6554). We would like to thank to the Wildlife Conservation, Rescue, Rehabilitation, Application and Research Center, Kafkas University, and Dr. Sami Şimşek for his assistance in providing the samples, and Donna Sue Özcan for English editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Tez.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

İbİş, O., Özcan, S., Kırmanoğlu, C. et al. Genetic Analysis of Turkish lynx (Lynx lynx) Based on Mitochondrial DNA Sequences. Russ J Genet 55, 1426–1437 (2019). https://doi.org/10.1134/S1022795419110061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795419110061

Keywords:

Navigation