Skip to main content
Log in

Mapping of the gypsy retrotransposon sequence is responsible for the EAST-dependent repression in the yellow gene model system of Drosophila melanogaster

  • Molecular Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The EAST protein is a component of nuclear matrix. In the interphase cells, EAST is localized in the extrachromosomal nuclear domain. Increased EAST concentration leads to a change in spatial chromatin structure. However, previously, it was not known whether this protein played any role in the regulation of transcription. This study examines the mechanism of the EAST protein effect on the yellow gene transcription. It was demonstrated that the EAST-dependent repression observed in a model system of the yellow gene could occur not only in the presence of the Su(Hw) insulator sequence but also in the presence of the long terminal repeat sequence of the gypsy retrotransposon. In the LTR, a 92-bp sequence involved in the mechanism of EAST-dependent repression was detected. These results suggest that the found DNA motif is the place of the assembly of a protein complex, which functionally interacts with the EAST protein. This complex either independently suppresses the yellow gene expression in bristles or moves the transgene in the nuclear region with a high concentration of transcription repression factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wasser, M. and Chia, W., The EAST protein of drosophila controls an expandable nuclear endoskeleton, Nat. Cell Biol., 2000, vol. 2, pp. 268–275. doi 10.1038/35010535

    Article  CAS  PubMed  Google Scholar 

  2. Wasser, M. and Chia, W., The extrachromosomal East protein of Drosophila can associate with polytene chromosomes and regulate gene expression, PLoS One, 2007, vol. 2, e412. doi 10.1371/journal.pone.0000412

    Article  PubMed  PubMed Central  Google Scholar 

  3. Qi, H., Rath, U., Ding, Y., et al., EAST interacts with Megator and localizes to the putative spindle matrix during mitosis in Drosophila, J. Cell Biochem., 2005, vol. 95, pp. 1284–1291. doi 10.1002/jcb.20495

    Article  CAS  PubMed  Google Scholar 

  4. O’Hare, K., Murphy, C., Levis, R., and Rubin, G.M., DNA sequence of the white locus of Drosophila melanogaster, J. Mol. Biol., 1984, vol. 180, pp. 437–455.

    Article  PubMed  Google Scholar 

  5. Davison, D., Chapman, C.H., Wedeen, C., and Bingham, P.M., Genetic and physical studies of a portion of the white locus participating in transcriptional regulation and in synapsis-dependent interactions in Drosophila adult tissues, Genetics, 1985, vol. 110, pp. 479–494.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Spana, C. and Corces, V.G., DNA bending is a determinant of binding specificity for a Drosophila zinc finger protein, Genes Dev., 1990, vol. 4, pp. 1505–1515.

    Article  CAS  PubMed  Google Scholar 

  7. Scott, K.S., Taubman, A.D., and Geyer, P.K., Enhancer blocking by the Drosophila gypsy insulator depends upon insulator anatomy and enhancer strength, Genetics, 1999, vol. 153, pp. 787–798.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Gause, M., Morcillo, P., and Dorsett, D., Insulation of enhancer–promoter communication by a gypsy transposon insert in the Drosophila cut gene: cooperation between suppressor of hairy-wing and modifier of mdg4 proteins, Mol. Cell Biol., 2001, vol. 21, pp. 4807–4817. doi 10.1128/MCB.21.14.4807-4817.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ghosh, D., Gerasimova, T.I., and Corces, V.G., Interactions between the Su(Hw) and Mod(mdg4) proteins required for gypsy insulator function, EMBO J., 2001, vol. 20, pp. 2518–2527. doi 10.1093/emboj/20.10.2518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pai, C.Y., Lei, E.P., Ghosh, D., and Corces, V.G., The centrosomal protein CP190 is a component of the gypsy chromatin insulator, Mol. Cell., 2004, vol. 16, pp. 737–748. doi 10.1016/j.molcel.2004.11.004

    Article  CAS  PubMed  Google Scholar 

  11. Golovnin, A., Melnikova, L., Shapovalov, I., et al., EAST organizes Drosophila insulator proteins in the interchromosomal nuclear compartment and modulates CP190 binding to chromatin, PLoS One, 2015, vol. 10, e0140991. doi 10.1371/journal.pone.0140991

    Article  PubMed  PubMed Central  Google Scholar 

  12. Melnikova, L., Shapovalov, I., Kostyuchenko, M., et al., EAST affects the activity of Su(Hw) insulators by two different mechanisms in Drosophila melanogaster, Chromosoma, 2016. doi 10.1007/s00412-016-0596-3

    Google Scholar 

  13. Pirrotta, V., Vectors for P-mediated transformation in Drosophila, Biotechnology, 1988, vol. 10, pp. 437–456.

    CAS  PubMed  Google Scholar 

  14. Savitskaya, E., Melnikova, L., Kostuchenko, M., et al., Study of long-distance functional interactions between Su(Hw) insulators that can regulate enhancer–promoter communication in Drosophila melanogaster, Mol. Cell Biol., 2006, vol. 26, no. 3, pp. 754–761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ashburner, M., Drosophila: a Laboratory Manual, New York: Cold Spring Harbor Lab., 1989.

    Google Scholar 

  16. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: a Laboratory Manual, Cold Spring Harbor: Cold Spring Harbor Lab., 1989, 2nd ed.

    Google Scholar 

  17. Karess, R.E. and Rubin, G.M., Analysis of P transposable element functions in Drosophila, Cell, 1984, vol. 38, no. 1, pp. 135–146.

    Article  CAS  PubMed  Google Scholar 

  18. Rubin, G.M. and Spradling, A.C., Genetic transformation of Drosophila with transposable element vectors, Science, 1982, vol. 218, no. 4570, pp. 348–353.

    Article  CAS  PubMed  Google Scholar 

  19. Spradling, A.C. and Rubin, G.M., Transposition of cloned P elements into Drosophila germ line chromosomes, Science, 1982, vol. 218, no. 4570, pp. 341–347.

    Article  CAS  PubMed  Google Scholar 

  20. Geyer, P.K. and Corces, V.G., Separate regulatory elements are responsible for the complex pattern of tissuespecific and developmental transcription of the yellow locus in Drosophila melanogaster, Genes Dev., 1987, vol. 1, pp. 996–1004.

    Article  CAS  PubMed  Google Scholar 

  21. Siegal, M.L. and Hartl, D.L., Application of Cre/loxP in Drosophila: site-specific recombination and transgene co-placement, Methods Mol. Biol., 2000, vol. 136, pp. 487–495.

    CAS  PubMed  Google Scholar 

  22. Robertson, H.M., Preston, C.R., Phillis, R.W., et al., A stable genomic source of P element transposase in Drosophila melanogaster, Genetics, 1988, vol. 118, pp. 461–470.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Mel’nikova, L.S., Krivega, I.V., Georgiev, P.G., and Golovnin, A.K., Nuclear matrix protein EAST is involved in regulation of transcription of the yellow gene in Drosophila melanogaster, Dokl. Biol. Sci., 2007, vol. 415, no. 1–6, pp. 313–316.

    Article  PubMed  Google Scholar 

  24. Melnikova, L.S., Krivega, I.V., Georgiev, P.G., and Golovnin, A.K., The nuclear matrix protein EAST affects the transcription of Drosophila melanogaster genes irrespective of the presence of retrotransposon MDG4 sequences, Russ. J. Genet., 2007, vol. 43, no. 12, pp. 1415–1419. doi 10.1134/S1022795407120125

    Article  CAS  Google Scholar 

  25. Morris, J.R., Geyer, P.K., and Wu, C.T., Core promoter elements can regulate transcription on a separate chromosome in trans, Genes Dev., 1999, vol. 13, pp. 253–258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Geyer, P.K., Green, M.M., and Corces, V.G., Reversion of a gypsy-induced mutation at the yellow (y) locus of Drosophila melanogaster is associated with the insertion of a newly defined transposable element, Proc. Natl. Acad. Sci. U.S.A., 1988, vol. 85, pp. 3938–3942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Parnell, T.J., Viering, M.M., Skjesol, A., et al., An endogenous suppressor of hairy-wing insulator separates regulatory domains in Drosophila, Proc. Natl. Acad. Sci. U.S.A., 2003, vol. 100, pp. 13436–13441. doi 10.1073/pnas.2333111100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Marlor, R.L., Parkhurst, S.M., and Corces, V.G., The Drosophila melanogaster gypsy transposable element encodes putative gene products homologous to retroviral proteins, Mol. Cell Biol., 1986, vol. 6, pp. 1129–1134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cremer, T., Kupper, K., Dietzel, S., and Fakan, S., Higher order chromatin architecture in the cell nucleus: on the way from structure to function, Biol. Cell, 2004, vol. 96, pp. 555–567. doi 10.1016/j.biolcel.2004.07.002

    Article  CAS  PubMed  Google Scholar 

  30. Fraser, P. and Bickmore, W., Nuclear organization of the genome and the potential for gene regulation, Nature, 2007, vol. 447, pp. 413–417. doi 10.1038/nature05916

    Article  CAS  PubMed  Google Scholar 

  31. Branco, M.R. and Pombo, A., Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations, PLoS Biol., 2006, vol. 4, e138. doi 10.1371/journal. pbio.0040138

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chambeyron, S. and Bickmore, W.A., Does looping and clustering in the nucleus regulate gene expression? Curr. Opin. Cell Biol., 2004, vol. 16, pp. 256–262. doi 10.1016/j.ceb.2004.03.004

    Article  CAS  PubMed  Google Scholar 

  33. Chakalova, L. and Fraser, P., Organization of transcription, Cold Spring Harbor Perspect. Biol., 2010, vol. 2, a000729. doi 10.1101/cshperspect.a000729

    Google Scholar 

  34. Xu, Q., Li, M., Adams, J., and Cai, H.N., Nuclear location of a chromatin insulator in Drosophila melanogaster, J. Cell Sci., 2004, vol. 117, pp. 1025–1032. doi 10.1242/jcs.00964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Melnikova.

Additional information

Original Russian Text © L.S. Melnikova, M.V. Kostyuchenko, I.V. Krivega, I.S. Shapovalov, P.G. Georgiev, A.K. Golovnin, 2017, published in Genetika, 2017, Vol. 53, No. 9, pp. 1042–1052.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melnikova, L.S., Kostyuchenko, M.V., Krivega, I.V. et al. Mapping of the gypsy retrotransposon sequence is responsible for the EAST-dependent repression in the yellow gene model system of Drosophila melanogaster . Russ J Genet 53, 988–997 (2017). https://doi.org/10.1134/S1022795417090101

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795417090101

Keywords

Navigation