Skip to main content
Log in

Functional Genomic Analysis of the SPL9 Gene in Arabidopsis thaliana under Low Phosphate Conditions

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Inorganic phosphate (Pi) is an essential nutrient, which is often served as a limiting factor in plant growth. It has been reported that SPL family members, such as SPL3, regulate Pi deficiency responses by controlling the expression of Pi deficiency responsive genes. To elucidate whether SPL9 respond to low phosphorus stress, we investigated the phenotypes and conducted RNA sequencing analysis in transgenic Arabidopsis thaliana with overexpressing rSPL9 (R9) under conditions of both normal and low Pi availability. Compared with wild-type plants, R9 showed decreased anthocyanin accumulation and increased Pi contents in shoots under Pi deficiency. Through RNA-seq analysis compared with wild-type plants, we detected 217 genes significantly differentially expressed in conditions of Pi sufficiency, and 121 genes differentially expressed in conditions of Pi deficiency in R9 plants. Under Pi deficiency, MYB62 and ZAT6 are two important differentially expressed genes (DEGs) that both regulate the Pi uptake processes. In addition, these DEGs included multiple protein kinases, jasmonic acid response genes and genes related to salt stress responses. Genes associated with hydrolase and transferase activity were also differentially regulated by Pi deficiency, such as cytochrome P450 monooxygenases. Of particular note, the transcription factor AP2-EREBP and members of the bHLH family were among the most significantly differentially regulated genes identified under both Pi sufficient and Pi deficient conditions. In conclusion, our analysis of the R9 transcriptome highlights the importance of SPL9 under conditions of Pi-deficiency. Except for stress and defense response genes, the R9 transcriptome also characterized the induction of ethylene or jasmonic acid signaling under Pi deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Raghothama, K.G., Phosphate acquisition, Annu. Rev. Plant Physiol. Mol. Biol., 1999, vol. 50, p. 665.

    Article  CAS  Google Scholar 

  2. Rubio, V., Linhares, F., and Solano, R., A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae, Gene Dev., 2001, vol. 15, p. 2122.

    Article  CAS  Google Scholar 

  3. Devaiah, B.N., Nagarajan, V.K., and Raghothama, K.G., Phosphate homeostasis and root development in Arabidopsis are synchronized by the zinc fingertranscription factor ZAT6, Plant Physiol., 2007, vol. 145, no. 1, p. 147.

    Article  CAS  Google Scholar 

  4. Chen, Z.H., Nimmo, G.A., Jenkins, G.I., and Nimmo, H.G., BHLH32 modulates several biochemical and morphological processes that respond to Pi starvation in Arabidopsis, Biochem. J., 2007, vol. 405, p. 191.

    Article  CAS  Google Scholar 

  5. Devaiah, B.N., Madhuvanthi, R., Karthikeyan, A.S., and Raghothama, K.G., Phosphate starvation responses and gibberellic acid biosynthesis are regulated by the MYB62 transcription factor in Arabidopsis, Mol. Plant, 2009, vol. 2, no. 1, p. 43.

    Article  CAS  Google Scholar 

  6. Ye, Q., Wang, H., Su, T., Wu, W.H., and Chen, Y.F., The Ubiquitin E3 Ligase PRU1 regulates WRKY6 degradation to modulate phosphate homeostasis in response to low-Pi stress in Arabidopsis, Plant Cell, 2018, vol. 30, p. 1062.

    Article  CAS  Google Scholar 

  7. Su, T., Xu, Q., Zhang, F.C., Chen, Y., Li, L.Q., Wu, W.H., and Chen, Y.F., WRKY42 modulates phosphate homeostasis through regulating phosphate translocation and acquisition in Arabidopsis, Plant Physiol., 2015, vol. 167, p. 1579.

    Article  CAS  Google Scholar 

  8. Wang, H., Xu, Q., Kong, Y.H., Chen, Y., Duan, J.Y., Wu, W.H., and Chen, Y.F., Arabidopsis WRKY45 transcription factor activates PHOSPHATE TRANSPORTER1;1 expression in response to phosphate starvation, Plant Physiol., 2014, vol. 164, p. 2020.

    Article  CAS  Google Scholar 

  9. Devaiah, B.N., Karthikeyan, A.S., and Raghothama, K.G., WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis, Plant Physiol., 2007a, vol. 143, p. 1789.

    Article  CAS  Google Scholar 

  10. Guo, C., Xu, Y., Shi, M., Lai, Y., Wu, X., Wang, H., Zhu, Z., Poethig, R.S., and Wu, G., Repression of miR156 by miR159 regulates the timing of the juvenile-to-adult transition in Arabidopsis, Plant Cell, 2017, vol. 29, p. 1293.

    Article  CAS  Google Scholar 

  11. He, J., Xu, M., Willmann, M.R., McCormick, K., Hu, T., Yang, L., Starker, C.G., Voytas, D.F., Meyers, B.C., and Poethig, R.S., Threshold-dependent repression of SPL gene expression by miR156/miR157 controls vegetative phase change in Arabidopsis thaliana, PLoS Genet., 2018, vol. 14, p. e1007337.

    Article  Google Scholar 

  12. Wang, J.W., Schwab, R., Czech, B., Mica, E., and Weigel, D., miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana, Cell, 2009, vol. 138, p. 738.

    Article  CAS  Google Scholar 

  13. Schwarz, S., Grande, A.V., Bujdoso, N., Saedler, H., and Huijser, P., The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis, Plant Mol. Biol., 2008, vol. 67, p. 183.

    Article  CAS  Google Scholar 

  14. Yu, N., Cai, W.J., Wang, S., Shan, C.M., Wang, L.J., and Chen, X.Y., Temporal control of trichome distribution by microRNA156-targeted SPL genes in Arabidopsis thaliana, Plant Cell, 2010, vol. 22, p. 2322.

    Article  CAS  Google Scholar 

  15. Gou, J.Y., Felippes, F., Liu, C.J., Weigel, D., and Wang, J.W., Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor, Plant Cell, 2011, vol. 23, p. 1512.

    Article  CAS  Google Scholar 

  16. Mao, Y.B., Liu, Y.Q., Chen, D.Y., Chen, F.Y., Fang, X., Hong, G.J., Wang, L.J., Wang, J.W., and Chen, X.Y., Jasmonate response decay and defense metabolite accumulation contributes to age-regulated dynamics of plant insect resistance, Nat. Commun., 2017, vol. 8, p. 13925.

    Article  CAS  Google Scholar 

  17. Cui, L.G., Shan, J.X., Shi, M., Gao, J.P., and Lin, H.X., The miR156-SPL9-DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants, Plant J., 2014, vol. 80, p. 1108.

    Article  CAS  Google Scholar 

  18. Lei, K.J., Lin, Y.M., Ren, J., Bai, L., Miao, Y.C., An, G.Y., and Song, C.P., Modulation of the phosphate-deficient responses by microrna156 and its targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 3 in Arabidopsis, Plant Cell Physiol., 2016, vol. 57, p. 192.

    Article  CAS  Google Scholar 

  19. Cardon, G., Hohmann, S., Klein, J., Nettesheim, K., Saedler, H., and Huijser, P., Molecular characterisation of the Arabidopsis SBP-box genes, 1999, Gene, vol. 237, p. 91.

    Article  CAS  Google Scholar 

  20. Fornara, F. and Coupland, G., Plant phase transitions make a SPLash, Cell, 2009, vol. 138, p. 625.

    Article  CAS  Google Scholar 

  21. Wang, J.W., Schwab, R., Czech, B., Mica, E., and Weigel, D., Dual effects of miR156-targeted SPL genes and CYP78A5/ KLUH on plastochron length and organ size in Arabidopsis thaliana, Plant Cell, 2008, vol. 20, p. 1231.

    Article  CAS  Google Scholar 

  22. Chiou, T.J., Aung, K., Lin, S.I., Wu, C.C., Chiang, S.F., and Su, C.L., Regulation of phosphate homeostasis by microRNA in Arabidopsis, Plant Cell, 2006, vol. 18, p. 412.

    Article  CAS  Google Scholar 

  23. Dong, H., Bai, L., Zhang, Y., Zhang, G., Mao, Y., Min, L., Xiang, F., Qian, D., Zhu, X., and Song, C.P., Modulation of guard cell turgor and drought tolerance by a peroxisomal acetate–malate shunt, Mol. Plant, 2018, vol. 11, p. 1278.

    Article  CAS  Google Scholar 

  24. Shi, H., Zhang, S., Lin, D., Wei, Y., Yan, Y., Liu, G., Reiter, R.J., and Chan, Z., Zinc finger of Arabidopsis thaliana 6 is involved in melatonin-mediated auxin signaling through interacting INDETERMINATE DOMAIN15 and INDOLE-3-ACETIC ACID 17, J. Pineal Res., 2018, vol. 65(2), p. e12494.

    Article  Google Scholar 

  25. Lan, P., Li, W., and Schmidt, W., Genome-wide co-expression analysis predicts protein kinases as important regulators of phosphate deficiency-induced root hair remodeling in Arabidopsis, BMC Genomics, 2013, vol. 14, p. 210.

    Article  CAS  Google Scholar 

  26. Idänheimo, N., Gauthier, A., Salojärvi, J., Siligato, R., Brosché, M., Kollist, H., Mähönen, A.P., Kangasjärvi, J., and Wrzaczek, M., The Arabidopsis thaliana cysteine-rich receptor-like kinases CRK6 and CRK7 protectagainst apoplastic oxidative stress, Biochem. Biophys. Res. Commun., 2014, vol. 445, p. 457.

    Article  Google Scholar 

  27. Tanaka, H., Osakabe, Y., Katsura, S., Mizuno, S., Maruyama, K., Kusakabe, K., Mizoi, J., Shinozaki, K., and Yamaguchi-Shinozaki, K., Abiotic stress-inducible receptor-like kinases negatively control ABA signaling in Arabidopsis, Plant J., 2012, vol. 70, p. 599.

    Article  CAS  Google Scholar 

  28. Matsuda, T., Kuramata, M., Takahashi, Y., Kitagawa, E., Youssefian, S., and Kusano, T., A novel plant cysteine-rich peptide family conferring cadmium tolerance to yeast and plants, Plant Signaling Behav., 2009, vol. 4, p. 419.

    Article  CAS  Google Scholar 

  29. Vitart, V., Baxter, I., Doerner, P., and Harper, J.F., Evidence for a role in growth and salt resistance of a plasma membrane H+-ATPase in the root endodermis, Plant J., 2001, vol. 27, p. 191.

    Article  CAS  Google Scholar 

  30. Schuler, M.A., Duan, H., Bilgin, M., and Ali, S., Arabidopsis cytochrome P450s through the looking glass: a window on plant biochemistry, Phytochem. Rev., 2006, vol. 5, p. 205.

    Article  CAS  Google Scholar 

  31. Greer, S., Wen, M., Bird, D., Wu, X., Samuels, L., Kunst, L., and Jetter, R., The cytochrome P450 enzyme CYP96A15 is the midchain alkane hydroxylase responsible for formation of secondary alcohols and ketones in stem cuticular wax of Arabidopsis, Plant Physiol., 2007, vol. 145, p. 653.

    Article  CAS  Google Scholar 

  32. Wen, M. and Jetter, R., Composition of secondary alcohols, ketones, alkanediols, and ketols in Arabidopsis thaliana cuticular waxes, J. Exp. Bot., 2009, vol. 60, p. 1811.

    Article  CAS  Google Scholar 

  33. Morikawa, T., Mizutani, M., and Ohta, D., Cytochrome P450 subfamily CYP710A genes encode sterol C-22 desaturase in plants, Biochem. Soc. Trans., 2006, vol. 34, p. 1202.

    Article  CAS  Google Scholar 

  34. Lee, S., Badieyan, S., Bevan, D.R., Herde, M., Gatz, C., and Tholl, D., Herbivore-induced and floral homoterpene volatiles are biosynthesized by a single P450 enzyme (CYP82G1) in Arabidopsis, Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 107, p. 21205.

    Article  CAS  Google Scholar 

  35. Cui, Y., Chen, C.L., Cui, M., Zhou, W.J., Wu, H.L., and Ling, H.Q., Four IVa bHLH transcription factors are novel interactors of FIT and mediate JA inhibition of iron uptake in Arabidopsis, Mol. Plant, 2018, vol. 11, p.1166.

    Article  CAS  Google Scholar 

  36. Song, S., Qi, T., Fan, M., Zhang, X., Gao, H., Huang, H., Wu, D., Guo, H., and Xie, D., The bHLH subgroup IIId factors negatively regulate jasmonate-mediated plant defense and development, PLoS Genet., 2013, vol. 9, p. e1003653.

    Article  CAS  Google Scholar 

  37. Kim, J. and Kim, H.Y., Functional analysis of a calcium-binding transcription factor involved in plant salt stress signaling, FEBS Lett., 2006, vol. 580, p. 5251.

    Article  CAS  Google Scholar 

  38. Neumann, G., The role of ethylene in plant adaptations for phosphate acquisition in soils—a review, Front. Plant Sci., 2016, vol. 6, p.1224.

    Article  Google Scholar 

  39. Liu, Y., Xie, Y., Wang, H., Ma, X., Yao, W., and Wang, H., Light and ethylene coordinately regulate the phosphate starvation response through transcriptional regulation of PHOSPHATE STARVATION RESPONSE1, Plant Cell, 2017, vol. 29, p. 2269.

    Article  CAS  Google Scholar 

  40. Khan, G.A., Vogiatzaki, E., Glauser, G., and Poirier, Y., Phosphate deficiency induces the jasmonate pathway and enhances resistance to insect herbivory, Plant Physiol., 2016, vol. 171, p. 632.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Professor Jiawei Wang for providing the overexpressing rSPL9 seeds.

Funding

This work was supported by the National Natural Science Foundation of China (grant nos. 31601140 and 31900241).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Dong.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving humans or animals performed by any of the authors.

Additional information

The article is published in the original.

Abbreviations: R9—overexpression of rSPL9.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, KJ., Dong, H. Functional Genomic Analysis of the SPL9 Gene in Arabidopsis thaliana under Low Phosphate Conditions. Russ J Plant Physiol 69, 32 (2022). https://doi.org/10.1134/S1021443722020091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443722020091

Keywords:

Navigation