Skip to main content
Log in

Possible Activation of С3 Photosynthesis in С4 Halophyte Kochia prostrata Exposed to an Elevated Concentration of СО2

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The effect of an elevated concentration of СО2 (800 ppm) on the growth rate, efficiency of photosystem I (PS I) and photosystem II (PS II), content of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPc), as well as proline and sodium and potassium ions, was investigated in the shoots of С4-halophyte Kochia prostrata (L.) Schrad. An elevated concentration of СО2 caused a decrease in accumulation of dry biomass (1.2 times), a rise in the content of proline (1.2 times) and potassium ions (1.3 times), and a shortening of time required to reach the maximum P700 oxidation level (PS I) (1.7 times). The content of sodium ions and water in the shoots and efficiency of PS II (Fv/Fm) did not change. Immunoblotting showed that, at the elevated concentration of СО2, the ratio between Rubisco and PEPc proteins rose from 1.3 to 3.4. The shortening of time required to reach the maximum oxidation level of PS I indirectly points to a reduction in the activity of cyclic transport of electrons responsible for efficient operation of the С4-carbon-concentrating mechanism. The high concentration of СО2 is suggested to activate the С3-pathway of photosynthesis in С4-halophyte K. prostrata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Sage, R.F., Sage, T.L., and Kocacinar, F., Photorespiration and the evolution of C4 photosynthesis, Annu. Rev. Plant Biol., 2012, vol. 63, p. 19. https://doi.org/10.1146/annurev-arplant-042811-105511

    Article  CAS  PubMed  Google Scholar 

  2. Raven, J.A., Beardall, J., and Sánchez-Baracaldo, P., The possible evolution and future of CO2-concentrating mechanisms, J. Exp. Bot., 2017, vol. 68, p. 3701. https://doi.org/10.1093/jxb/erx110

    Article  CAS  PubMed  Google Scholar 

  3. Arrivault, S., Moraes, T.A., Obata, T., Medeiros, D.B., Fernie, A.R., Boulouis, A., Ludwig, M., Lunn, J.E., Borghi, G.L., Schlereth, A., Guenther, M., and Stitt, M., Metabolite profiles reveal inter-specific variation in operation of the Calvin–Benson cycle in both C4 and C3 plants, J. Exp. Bot., 2019, vol. 70, p. 1843. https://doi.org/10.1093/jxb/erz051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lara, M.V. and Andreo, C.S., C4 plants adaptation to high levels of CO2 and to drought environments, in Abiotic Stress in Plants: Mechanisms and Adaptations, Shanker, A. and Venkateswarlu, B., Eds., London: IntechOpen, 2011, vol. 18, p. 415. https://doi.org/10.5772/24936

  5. Edwards, G.E. and Walker, D.A., C 3 , C 4 : Mechanism, and Cellular and Environmental Regulation, of Photosynthesis, Oxford: Blackwell, 1983.

    Google Scholar 

  6. Nakamura, N., Iwano, M., Havaux, M., Yokota, A., and Munekage, Y.N., Promotion of cyclic electron transport around photosystem I during the evolution of NADP malic enzyme-type C photosynthesis in the genus Flaveria, New Phytol., 2013, vol. 199, p. 832. https://doi.org/10.1111/nph.12296

    Article  CAS  PubMed  Google Scholar 

  7. Berry, J.O., Mure, C.M., and Yerramsetty, P., Regulation of Rubisco gene expression in C4 plants, Curr. Opin. Plant Biol., 2016, vol. 31, p. 23. https://doi.org/10.1016/j.pbi.2016.03.004

    Article  CAS  PubMed  Google Scholar 

  8. Westhoff, P. and Gowik, U., Evolution of C4 phosphoenolpyruvate carboxylase. Genes and proteins: a case study with the genus Flaveria, Ann. Bot., 2004, vol. 93, p. 13. https://doi.org/10.1093/aob/mch003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ghannoum, O., von Caemmerer, S., Ziska, L.H., and Conroy, J.P., The growth response of C4 plants to rising atmospheric CO2 partial pressure: a reassessment, Plant Cell Environ., 2000, vol. 23, p. 931. https://doi.org/10.1046/j.1365-3040.2000.00609.x

    Article  CAS  Google Scholar 

  10. Reddy, A.R., Rasineni, G.K., and Raghavendra, A.S., The impact of global elevated CO2 concentration on photosynthesis and plant productivity, Curr. Sci., 2010, vol. 99, p. 46.

    CAS  Google Scholar 

  11. Watling, J.R., Press, M.C., and Quick, W.P., Elevated CO2 induces biochemical and ultrastructural changes in leaves of the C4 cereal sorghum, Plant Physiol., 2000, vol. 123, p. 1143. https://doi.org/10.1104/pp.123.3.1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sage, R.F., How terrestrial organisms sense, signal and respond to carbon dioxide, Integr. Comp. Biol., 2002, vol. 42, p. 469. https://doi.org/10.1093/icb/42.3.469

    Article  PubMed  Google Scholar 

  13. Bates, L.S., Waldren, R.P., and Teare, I.D., Rapid determination of free proline for water stress studies, Plant Soil, 1973, vol. 39, p. 205. https://doi.org/10.1007/BF00018060

    Article  CAS  Google Scholar 

  14. Pozhidaeva, E.S., Western blot hybridization, in Molekulyarno-geneticheskie i biokhimicheseskie metody v sovremennoi biologii rastenii (Molecular-Genetic and Biochemical Methods in Modern Plant Biology), Kuznetsov, Vl.V., Kuznetsov, V.V., and Romanov, G.A., Eds., Moscow: BINOM, Laboratoriya Znanii, 2011, p. 228.

  15. Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 1970, vol. 227, p. 680. https://doi.org/10.1038/227680a0

    Article  CAS  PubMed  Google Scholar 

  16. Drake, B.G., Gonzalez-Meler, M.A., and Long, S.P., More efficient plants: a consequence of rising atmospheric CO2? Annu. Rev. Plant Physiol. Plant Mol. Biol., 1997, vol. 48, p. 609. https://doi.org/10.1146/annurev.arplant.48.1.609

    Article  CAS  PubMed  Google Scholar 

  17. Ainsworth, E.A. and Rogers, A., The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions, Plant Cell Environ., 2007, vol. 30, p. 258. https://doi.org/10.1111/j.1365-3040.2007.01641.x

    Article  CAS  PubMed  Google Scholar 

  18. Dusenge, M.E., Duarte, A.G., and Way, D.A., Plant carbon metabolism and climate change: elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration, New Phytol., 2019, vol. 221, p. 32. https://doi.org/10.1111/nph.15283

    Article  CAS  PubMed  Google Scholar 

  19. Leuzinger, S., Luo, Y., Beier, C., Dieleman, W., Vicca, S., and Körner, C., Do global change experiments overestimate impacts on terrestrial ecosystems? Trends Ecol. Evol., 2011, vol. 26, p. 236. https://doi.org/10.1016/j.tree.2011.02.011

    Article  PubMed  Google Scholar 

  20. Warren, J.M., Jensen, A.M., Medlyn, B.E., Norby, R.J., and Tissue, D.T., Carbon dioxide stimulation of photosynthesis in Liquidambar styraciflua is not sustained during a 12-year field experiment, AoB Plants, 2015, vol. 7, art. ID plu074. https://doi.org/10.1093/aobpla/plu074

    Article  CAS  Google Scholar 

  21. Moore, B.D., Cheng, S.-H., Sims, D., and Seemann, J.R., The biochemical and molecular basis for photosynthetic acclimation to elevated atmospheric CO2, Plant Cell Environ., 1999, vol. 22, p. 567. https://doi.org/10.1046/j.1365-3040.1999.00432.x

    Article  CAS  Google Scholar 

  22. Pérez-Romero, J.A., Idaszkin, Y.L., Barcia-Piedras, J.M., Duarte, B., Redondo-Gómez, S. Caçador, I., and Mateos-Naranjo, E., Disentangling the effect of atmospheric CO2 enrichment on the halophyte Salicornia ramosissima J. Woods physiological performance under optimal and suboptimal saline conditions, Plant Physiol. Biochem., 2018, vol. 127, p. 617. https://doi.org/10.1016/j.plaphy.2018.04.041

    Article  CAS  PubMed  Google Scholar 

  23. Ragel, P., Raddatz, N., Leidi, E.O., Quintero, F.J., and Pardo, J.M., Regulation of K+ nutrition in plants, Front. Plant Sci., 2019, vol. 10, p. 281. https://doi.org/10.3389/fpls.2019.00281

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hayat, S., Hayat, Q., Alyemeni, M.N., Wani, A.S., Pichtel, J., and Ahmad, A., Role of proline under changing environments: a review, Plant Signaling Behav., 2012, vol. 7, p. 1456. https://doi.org/10.4161/psb.21949

    Article  CAS  Google Scholar 

  25. Zheng, S., Chen, Z., Nie, H., Sun, S., Zhou, D., Wang, T., Zhai, X., Liu, T., Xing, G., and Li, M., Identification of differentially expressed photosynthesis- and sugar synthesis-related genes in tomato (Solanum lycopersicum) plants grown under different CO2 concentrations, Biotechnol. Biotechnol. Equip., 2020, vol. 34, p. 84. https://doi.org/10.1080/13102818.2020.1715833

    Article  CAS  Google Scholar 

  26. Zhao, X., Li, W.F., Wang, Y., Ma, Z.H., Yang, S.J., Zhou, Q., Mao, J., and Chen, B.H., Elevated CO2 concentration promotes photosynthesis of grape (Vitis vinifera L. cv. ‘Pinot noir’) plantlet in vitro by regulating RbcS and Rca revealed by proteomic and transcriptomic profiles, BMC Plant Biol., 2019, vol. 19, p. 42. https://doi.org/10.1186/s12870-019-1644-y

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hibberd, J.M. and Covshoff, S., The regulation of gene expression required for C4 photosynthesis, Annu. Rev. Plant Biol., 2010, vol. 61, p. 181. https://doi.org/10.1146/annurev-arplant-042809-112238

    Article  CAS  PubMed  Google Scholar 

  28. Silva, R.G.D., Alves, R.D.C., and Zingaretti, S.M., Increased [CO2] causes changes in physiological and genetic responses in C4 crops: a brief review, Plants, 2020, vol. 9, p. 1567. https://doi.org/10.3390/plants9111567

    Article  CAS  PubMed Central  Google Scholar 

  29. Huang, Y., Fang, R., Li, Y., Liu, X., Wang, G., Yin, K., Jin, J., and Herbert, S.J., Warming and elevated CO2 alter the transcriptomic response of maize (Zea mays L.) at the silking stage, Sci. Rep., 2019, vol. 9, p. 17948. https://doi.org/10.1038/s41598-019-54325-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Reeves, G., Grangé-Guermente, M.J., and Hibberd, J.M., Regulatory gateways for cell-specific gene expression in C4 leaves with Kranz anatomy, J. Exp. Bot., 2017, vol. 68, p. 107. https://doi.org/10.1093/jxb/erw438

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z. F. Rakhmankulova or E. V. Shuyskaya.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Translated by N. Balakshina

Abbreviations: BSC—bundle sheath cells; CCM—carbon-concentrating mechanism; MC—mesophyll cells; PEPc—phosphoenolpyruvate carboxylase.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rakhmankulova, Z.F., Shuyskaya, E.V. & Prokofieva, M.Y. Possible Activation of С3 Photosynthesis in С4 Halophyte Kochia prostrata Exposed to an Elevated Concentration of СО2. Russ J Plant Physiol 68, 1107–1114 (2021). https://doi.org/10.1134/S1021443721060169

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443721060169

Keywords:

Navigation