Skip to main content
Log in

Fabrication and characterization of anhydrous polymer electrolyte membranes based on sulfonated poly(vinyl alcohol) and benzimidazole

  • Polymer Membranes
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

In the present study, a new type of chemically cross-linked polymer blend membranes consisting of poly(vinyl alcohol) (PVA), sulfosuccinic acid (SSA) and benzimidazole (BnIm), as a dopant, at different stoichometric ratios were prepared and used as proton conducting polymer electrolytes. The proton conductivities of the membranes were investigated as a function of blending composition and the temperature. TGA indicated that the blend polymers were thermally stable up to approximately 175°C; differential scanning calorimetry (DSC) results illustrated the homogeneity of the materials. The local chain flexibility of the host polymer increased with BnIm concentration. The methanol permeability values of the membranes were much lower than that of a Nafion-membrane. The proton conductivity of these materials increased with BnIm and SSA concentration and the temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Qiao, T. Hamaya, and T. Okada, Polymer 46, 10816 (2005).

    Article  Google Scholar 

  2. A. Aslan, S. Ü. Çelik, and A. Bozkurt, Solid State Ionics 180, 1240 (2009).

    Article  CAS  Google Scholar 

  3. B. Bae and D. Kim, J. Membr. Sci. 220, 75 (2003).

    Article  CAS  Google Scholar 

  4. R. Bouchet and E. Siebert, Solid State Ionics 118, 287 (1999).

    Article  CAS  Google Scholar 

  5. R. Tanaka, H. Yamamoto, S. Kawamura, and T. Iwase, Electrochim. Acta 40, 2421 (1995).

    Article  CAS  Google Scholar 

  6. P. Donoso, W. Gorecki, C. Berthier, F. Defendini, C. Poinsignon, and M. B. Armand, Solid State Ionics 28, 969 (1988).

    Article  Google Scholar 

  7. S. Petty-Week, J. J. Zupancic, and J. R. Swedo, Solid State Ionics 31, 117 (1988).

    Article  Google Scholar 

  8. A. Bozkurt and W. H. Meyer, Solid State Ionics 138, 259 (2001).

    Article  CAS  Google Scholar 

  9. M. Yamada and I. Honma, Polymer 46, 2986 (2005).

    Article  CAS  Google Scholar 

  10. A. Bozkurt, W. H. Meyer, and G. J. Wegner, Power Sources 123, 131 (2003).

    Article  Google Scholar 

  11. S. T. Günday, A. Bozkurt, W. H. Meyer, and G. Wegner, J. Polym. Sci., B, Polym. Phys. 44, 3322 (2006).

    Article  Google Scholar 

  12. F. Göktepe, A. Bozkurt, and S. T. Günday, Polym. Int. 57, 138 (2008).

    Article  Google Scholar 

  13. Y. Fu, A. Manthiram, and M. D. Guiver, Electrochem. Commun. 8, 1386 (2006).

    Article  CAS  Google Scholar 

  14. L. Lebrun, E.D. Silva, and M. Metayer, J. Appl. Polym. Sci. 84, 1572 (2002).

    Article  CAS  Google Scholar 

  15. D. S. Kim, H.B. Park, J. W. Rhim, and M. Lee, Solid State Ionics 176, 117 (2005).

    Article  CAS  Google Scholar 

  16. U. Sen, S. Ü. čCelik, A. Ata, and A. Bozkurt, Int. J. Hydrogen Energy 33, 2808 (2008).

    Article  CAS  Google Scholar 

  17. J. E. Castanheiroa, A. M. Ramosa, I. M. Fonsecaa, and J. Vital, Appl. Cataly. A: General 11, 17 (2006).

    Article  Google Scholar 

  18. C. E. Tsai, C. W. Lin, and B. J. Hwang, J. Power Sources 195, 2166 (2010).

    Article  CAS  Google Scholar 

  19. A. Oktay, U. Sen, A. Bozkurt, and A. Ata, Int. J. Hydrogen Energy 34, 2730 (2009).

    Google Scholar 

  20. J. V. Rhim, H. B. Park, C. S. Lee, J. H. Jun, D. S. Kim, and Y. M. Lee, J. Membr. Sci. 238, 143 (2004).

    Article  CAS  Google Scholar 

  21. C. E. Wilkes, J. W. Summers, C. A. Daniels, and M. T. Berard, PVC Handbook (Hanser Verlag, München, 2005).

    Google Scholar 

  22. A. Bozkurt and T. Pakula, Chem. Phys. Lett. 422, 499 (2006).

    Article  Google Scholar 

  23. X. T. Guo, Y. M. Zhao, P. Ning, and L. K. Li, China Plast. Ind. 34, 35 (2006).

    CAS  Google Scholar 

  24. J. V. Gasa, R. A. Weiss, and M.T. Shaw, J. Membr. Sci. 304, 173 (2007).

    Article  CAS  Google Scholar 

  25. T. Dippel, K. D. Kreuer, J. C. Lassegues, and D. Rodriguez, Solid State Ionics 61, 41 (1993).

    Article  CAS  Google Scholar 

  26. B. S. Hickman, M. Mascal, J. J. Titman, and I. G. Wood, J. Am. Chem. Soc. 121, 11486 (1999).

    Article  CAS  Google Scholar 

  27. G. R. Goward, M. F. H. Schuster, D. Sebastiani, I. Schnell, and H.W. Spiess, J. Phys. Chem. B 106, 9322 (2002).

    Article  CAS  Google Scholar 

  28. S. Ü. Çelik, A. Aslan, and A. Bozkurt, Solid State Ionics 179, 683 (2008).

    Article  Google Scholar 

  29. J. C. Persson and P. Jannasch, Solid State Ionics 177, 653 (2006).

    Article  CAS  Google Scholar 

  30. H. G. Herz, K. D. Kreuer, J. Maier, G. Scharfenberger, M.F.H. Schuster, and W.H. Meyer, Electrochim. Acta 48, 2165 (2003).

    Article  CAS  Google Scholar 

  31. S. T. Günday, A. Bozkurt, N. M. Aghatabay, and A. H. Baykal Mater. Chem. Phys. 105, 240 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehtap Safak Boroglu.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boroglu, M.S., Celik, S.U., Bozkurt, A. et al. Fabrication and characterization of anhydrous polymer electrolyte membranes based on sulfonated poly(vinyl alcohol) and benzimidazole. Polym. Sci. Ser. A 54, 231–239 (2012). https://doi.org/10.1134/S0965545X12030066

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X12030066

Keywords

Navigation