Skip to main content
Log in

The effect of a low-molecular-mass salt on stoichiometric polyelectrolyte complexes composed of oppositely charged macromolecules with different solvent affinities

  • Theory
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

The effect of a low-molecular-mass salt on the thermodynamic stability of stoichiometric interpolymer complexes composed of oppositely charged macromolecules with different solvent affinities has been theoretically studied. It has been shown that the dissociation of such complexes with an increase in the concentration of the salt proceeds via several stages. At a low concentration of the salt, complexes retain their structure and dimensions. When a certain critical concentration of the salt n crs is achieved, the dimensions of the complex increase abruptly. At this concentration, macromolecules involved in the complex begin to separate, and at concentration n *s , they fully move apart but remain soluble owing to the polyelectrolyte effect. Upon a further increase in the concentration of the salt, the polyelectrolyte effect is shielded and the dimensions of macromolecules decrease. The critical concentration of the low-molecular-mass salt, n crs , increases with an increase in the degree of ionization of macromolecules and a decrease in the affinity of the hydrophilic component for water and diminishes with the degree of polymerization of macromolecules and the degree of hydrophobicity of a polycation. Because of the easy formation of soluble complexes from oppositely charged macromolecules differing in solvent affinities and their high stability in solutions of a low-molecularmass salt, such complexes are promising for wide use in medicine and pharmaceutical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. M. Fuoss and H. Sadek, Science (Washington, D. C.) 110, 552 (1949).

    Article  CAS  Google Scholar 

  2. E. A. Bekturov and L. A. Bimendina, Adv. Polym. Sci. 41, 99 (1981).

    CAS  Google Scholar 

  3. E. Tsuchida and K. Abe, Adv. Polym. Sci. 45, 1 (1982).

    Article  Google Scholar 

  4. B. Philipp, H. Dautzenberg, K.-J. Linow, et al., Prog. Polym. Sci. 14, 91 (1989).

    Article  CAS  Google Scholar 

  5. V. A. Izumrudov, A. B. Zezin, and V. A. Kabanov, Usp. Khim. 60, 1570 (1991).

    Google Scholar 

  6. V. A. Kabanov, in Macromolecular Complexes in Chemistry and Biology, Ed. by P. Dubin, J. Bock, R. M. Davies, D. N. Schulz, and C. Thies (Springler, Berlin, 1994), p. 151.

    Google Scholar 

  7. M. W. Hsiang and R. D. Cole, Proc. Natl. Acad. Sci. U. S. A. 74, 4852 (1977).

    Article  CAS  Google Scholar 

  8. J.-P. Behr, Bioconjugate Chem. 5, 382 (1994).

    Article  CAS  Google Scholar 

  9. A. V. Kabanov and V. A. Kabanov, Bioconjugate Chem. 6, 7 (1995).

    Article  CAS  Google Scholar 

  10. A. Harada and K. Kataoka, Macromolecules 28, 5294 (1995).

    Article  CAS  Google Scholar 

  11. A. Harada and K. Kataoka, Science (Washington, D. C.) 238, 65 (1999).

    Article  Google Scholar 

  12. A. V. Kabanov, S. V. Vinogradov, Yu. G. Suzdaltseva, and V. Yu. Alakhov, Bioconjugate Chem. 6, 639 (1995).

    Article  CAS  Google Scholar 

  13. A. V. Kabanov, V. K. Bronich, V. A. Kabanov, et al., Macromolecules 29, 679 (1996).

    Google Scholar 

  14. E. Yu. Kramarenko, A. R. Khokhlov, and P. Reineker, J. Chem. Phys. 119, 4945 (2003).

    Article  CAS  Google Scholar 

  15. E. Yu. Kramarenko, A. R. Khokhlov, and P. Reineker, J. Chem. Phys. 125, 194902 (2006).

    Article  Google Scholar 

  16. M. Castelnovo, Europhys. Lett. 62, 841 (2003).

    Article  CAS  Google Scholar 

  17. T. Etrych, L. Leclercq, M. Boustta, and M. Vert, Eur. J. Pharm. Sci. 25, 281 (2005).

    CAS  Google Scholar 

  18. V. V. Vasilevskaya, L. Leclercq, M. Boustta, et al., Macromolecules 40, 5934 (2007).

    Article  CAS  Google Scholar 

  19. V. Yu. Borue and I. Ya. Erukhimovich, Macromolecules 23, 3625 (1990).

    Article  CAS  Google Scholar 

  20. V. V. Vasilevskaya and A. R. Khokhlov, Vysokomol. Soedin., Ser. A 28, 316 (1986).

    CAS  Google Scholar 

  21. A. R. Khokhlov, S. G. Starodubtzev, and V. V. Vasilevskaya, Adv. Polym. Sci. 109, 123 (1993).

    CAS  Google Scholar 

  22. V. V. Vasilevskaya, S. G. Starodubtsev, and A. R. Khokhlov, Vysokomol. Soedin., Ser. B 29, 930 (1987).

    CAS  Google Scholar 

  23. V. V. Vasilevskaya, I. I. Potemkin, and A. R. Khokhlov, Langmuir 15, 7918 (1999).

    Article  CAS  Google Scholar 

  24. G. Bokias, V. V. Vasilevskaya, I. Iliopoulos, et al., Macromolecules 33, 9757 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Vasilevskaya.

Additional information

Original Russian Text © M.K. Krotova, V.V. Vasilevskaya, A.R. Khokhlov, 2009, published in Vysokomolekulyarnye Soedineniya, Ser. A, 2009, Vol. 51, No. 10, pp. 1760–1768.

This work was supported by the Russian Foundation for Basic Research, project no. 08-03-00281-a.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krotova, M.K., Vasilevskaya, V.V. & Khokhlov, A.R. The effect of a low-molecular-mass salt on stoichiometric polyelectrolyte complexes composed of oppositely charged macromolecules with different solvent affinities. Polym. Sci. Ser. A 51, 1075–1082 (2009). https://doi.org/10.1134/S0965545X09100046

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X09100046

Keywords

Navigation