Skip to main content
Log in

Assessment of the Activity of Dispersed Catalysts in Hydrocracking Reactions of Hydrocarbonaceous Feedstock

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Concentrated suspensions of molybdenum, nickel, iron, and tungsten sulfide nanoparticles have been synthesized from inverse emulsions of aqueous solutions of molybdenum, nickel, iron, and tungsten salts in the presence of a sulfiding agent and hydrogen in a vacuum residue of oil distillation and have been tested in hydrocracking reactions of a mixture of paraffin wax and heavy cycle oil (HCO). The hydroconversion has been carried out in an autoclave at 445°C and a hydrogen pressure of 7 MPa. The results of the study have shown that the catalytic activity of the synthesized catalysts in cracking reactions increases in the order: MoS2, (MoS2 + Ni7S6), Ni7S6, Fe1 − xS, (NH4)0.25 ⋅ WO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. S. N. Khadzhiev, Pet. Chem. 56, 465 (2016).

    Article  CAS  Google Scholar 

  2. S. Zhang, D. Liu, W. Deng, and G. Que, Energy Fuels 21, 3057 (2007).

    Article  CAS  Google Scholar 

  3. G. Bellussi, G. Rispoli, A. Landoni, et al., J. Catal. 308, 189 (2013).

    Article  CAS  Google Scholar 

  4. M. T. Nguyen, N. T. Nguyen, J. Cho, et al., J. Ind. Eng. Chem. 43, 1 (2016).

    Article  CAS  Google Scholar 

  5. S. N. Khadzhiev, Kh. M. Kadiev, and M. Kh. Kadieva, Pet. Chem. 54, 323 (2014).

    Article  CAS  Google Scholar 

  6. G. Bellussi, G. Rispoli, D. Molinari, et al., Catal. Sci. Technol., No. 3, 176 (2013).

    Article  CAS  Google Scholar 

  7. S. N. Khadzhiev, Kh. M. Kadiev, L. A. Zekel’, and M. Kh. Kadieva, Pet. Chem. 58, 535 (2018).

    Article  CAS  Google Scholar 

  8. A. Del Bianco, N. Panariti, S. Di Carlo, et al., Energy Fuels 8, 593 (1994).

    Article  CAS  Google Scholar 

  9. N. Panaritia, A. Del Bianco, G. Del Piero, and M. Marchionna, Appl. Catal., A 204, 203 (2000).

  10. H. Kun, Z. Shuichang, M. Jingkui, et al., Pet. Sci. 8, 134 (2011).

    Article  Google Scholar 

  11. S. G. Jeon, J. G. Na, and C. H. Ko, Energy Fuels 25, 4256 (2011).

    Article  CAS  Google Scholar 

  12. A. Al-Marshed, A. Hart, G. Leeke, et al., Energy Fuels 29, 6306 (2015).

    Article  CAS  Google Scholar 

  13. D. Liu, W. Cui, S. Zhang, and G. Que, Energy Fuels 22, 4165 (2008).

    Article  CAS  Google Scholar 

  14. S. Zhang, W. Deng, H. Luo, et al., Energy Fuels 22, 3583 (2008).

    Article  CAS  Google Scholar 

  15. B. Shi and G. Que, Prepr. Pap.-Am. Chem. Soc. Div. Fuel Chem. 48, 722 (2003).

    CAS  Google Scholar 

  16. Kh. M. Kadiev, L. A. Zekel’, A. M. Gyul’maliev, et al., Pet. Chem. 59, 498 (2019).

    Article  CAS  Google Scholar 

  17. Kh. M. Kadiev, Extended Abstract of Doctoral Dissertation in Chemistry (Moscow, 2018) [in Russian].

  18. Kh. M. Kadiev, M. Kh. Kadieva, L. A. Zekel’, et al., Colloid J. 81, 90 (2019).

    Article  CAS  Google Scholar 

  19. A. J. van der Vlies, G. Kishan, J. W. Niemantsverdriet, et al., J. Phys. Chem. B 106, 3449 (2002).

    Article  CAS  Google Scholar 

  20. Kh. M. Kadiev, N. V. Oknina, A. L. Maksimov, et al., Res. J. Pharm. Biol. Chem. Sci. 7, 704 (2016).

    CAS  Google Scholar 

  21. S. R. Sergienko, B. A. Taimova, and E. I. Talalaev, Macromolecular Nonhydrocarbon Petroleum Compounds: Resins and Asphaltenes (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  22. O. C. Mullins, E. Y. Sheu, and A. G. Hammami, Heavy Oils and Petroleomics (Springer, New York, 2007).

    Book  Google Scholar 

  23. J. Ancheyta, F. Treiro, and M. S. Rana, Asphaltenes: Chemical Transformation During Hydroprocessing of Heavy Oils (CRC, Boca Raton, 2009).

    Google Scholar 

  24. Kh. M. Kadiev, L. A. Zekel’, A. M. Gyul’maliev, et al., Pet. Chem. 58, 1165 (2018).

    Article  CAS  Google Scholar 

  25. S. Vasireddy, B. Morreale, A. Cugini, Ch. Song, J. J. Spivey, Energy Environ. Sci., No. 4, 311 (2011).

    Article  Google Scholar 

  26. U. Graeser, G. Eschet, and R. Holighnaus, in Proceedings of the Refining Department, (American Petroleum Institute, San Diego, CA, 1986), p. 169.

  27. N. K. Benham and B. B. Pruden, CANMET Residuum Hydrocracking: Advances Through Control of Polar Aromatics (National Petroleum Refiners Association, San Antonio, TX, 1996).

    Google Scholar 

  28. N. Huy and V. H. Pham, Chem. Eng. Technol. 36, 1365 (2013).

    Article  Google Scholar 

  29. D. G. Barton, S. L. Soled, and E. Iglesia, Top. Catal. 6, 87 (1998).

    Article  CAS  Google Scholar 

  30. C. H. Kline and V. Kollonitsch, Ind. Eng. Chem. 57 (9), 53 (1965).

    CAS  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation, project no. 17-73-30046.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Zekel’.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maksimov, A.L., Zekel’, L.A., Kadieva, M.K. et al. Assessment of the Activity of Dispersed Catalysts in Hydrocracking Reactions of Hydrocarbonaceous Feedstock. Pet. Chem. 59, 968–974 (2019). https://doi.org/10.1134/S096554411909010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S096554411909010X

Keywords:

Navigation