Skip to main content
Log in

Impactor Type and Model of the Origin of the Zhamanshin Astrobleme, Kazakhstan

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

Fragments of heterogeneous cosmonegic substance (nickelphosphide Ni3P and ZnAl2) were found using high resolution analytical electron microscopic techniques, for the first time in samples from a large meteorite crater: the Zhamanshin astrobleme in Kazakstan. Inasmuch as such fragments cannot simultaneously occur in meteorite of any one type, we suggest that the impactor of the Zhamanshin crater was of comet nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anders, E. and Grevesse, N., Abundances of the elements: meteoritic and solar, Geochim. Cosmochim. Acta, 1989, vol. 53, no. 1, pp. 197–214.

    Article  Google Scholar 

  • Arakelyants, M.M., Shukolyukov, Yu.A., Dang, Vu Min’, and Izokh, E.P., K–Ar age of tektites of Vietnam and Zha manshin astrobleme, Aktual’nye Voprosy Meteoritiki v Sibiri (Current Problems of Meteoritics in Siberia), Novosibirsk, 1988, pp. 239–244.

    Google Scholar 

  • Bagdassarov, N., Neuville, D., Linard, Y., et al., DSC and Raman spectroscopy study of glass transition in tektites, Abstracts of EGS-AGU-EUG Joint Assembly, Nice 2003, abstract # 8631.

    Google Scholar 

  • Bindi, L., Eiler, J.M., Guan, Y.N., et al., Evidence for the extraterrestrial origin of a natural quasicrystal, Proc. National Acad. Sci., 2012, vol. 109, no. 5, pp. 1396–1401.

    Article  Google Scholar 

  • Blinov, I.M., Mechanism and conditions of the origin of hills on the floors of explosion craters during cratering explosions, Fiz. Goreniya Vzryva, 2004, vol. 40, no. 6, pp. 76–83.

    Google Scholar 

  • Boiko, Ya.I., Tektites–irghizites (bedding, compositional specifics and relation with impactites–zhamanshinites), Izv. Aakad. Nauk Kaz. SSR, Ser. Geol., 1989, no. 3, pp. 49–54.

    Google Scholar 

  • Bouŝka, V.V., Povondra, P.V., Florensky, P.V., and Randa, Z., Irghizites and zhamanshinites: Zhamanshin Crater, USSR, Meteoritics, 1981, vol. 16, no. 2, pp. 171–184.

    Article  Google Scholar 

  • Britvin, S.N., Kolomenskii, V.D., Boldyreva, M.M., et al., Nickelf phosphide (Ni,Fe)3P: a Ni-bearing analogue of schreibersite, Zap. Vseross. Mineral. O-va, 1999, vol. 128, no. 3, pp. 64–72.

    Google Scholar 

  • Chao, E.C.T., Dwornik, E.J., and Littler, J., New data on the nickel–iron spherules from southeast Asian tektites and their implications, Geochim. Cosmochim. Acta, 1964, vol. 28, no. 6, pp. 971–974.

    Article  Google Scholar 

  • Cliff, G. and Lorimer, G.W., Quantitative analysis of thin metal foils using EMMA-4, the ratio technique, Proceedings of the 5th European Congress on Electron Microscopy, London: The institute of Physics, 1972, pp. 140–141.

    Google Scholar 

  • Ehmann, W.D., Stroube, Jr.W.B., Ali, M.Z., and Hossain, T.I.M., Zhamanshin crater glasses: chemical composition and comparison with tektites, Meteoritics, 1977, vol. 12, pp. 212–215.

    Google Scholar 

  • Feldman, V.I., Kapustkina, I.G., Granovskii, L.B., and Sazonova, L.V., Meteoritic materials in impactites, Kosmokhimiya i meteoritika (Cosmochemistry and Meteoritics), Kiev: Nauk. Dumka, 1984, pp. 147–151.

    Google Scholar 

  • Florenskii, P.V. and Dabizha, A.I., Meteoritnyi krater Zhamanshin (Zhamanshin Meteorite Crater), Moscow: Nauka, 1980.

    Google Scholar 

  • Gladkikh, N.T., Dukarov, S.V., Krishtal’, A.P., et al., Poverkhnostnye yavleniya i fazovye prevrashcheniya v kondensirovannykh plenkakh (Surface Phenomena and Phase Transformations in Condensed Films), Khar’kov: KhNU im. V.N. Karazina, 2004.

    Google Scholar 

  • Gladkikh, N.T. and Kryshtal’, A.P., Change of unit cell parameters in island vacuum condensates of Cu, Ag, and Au, VANT. Ser. Vakuum, Chistye Materialy, Sverkhprovodniki, 1998, no. 2, p. 3.

    Google Scholar 

  • Glass, B.P., Fredriksson, K., and Florensky, P.V., Microirghizites recovered from a sediment sample from the Zhamanchin impact structure, J. Geophys. Res., 1983, vol. 388.

  • Gornostaeva, T.A., Mokhov, A.V., Kartashov, P.M., and Bogatikov, O.A., Condensate glasses from the Zhamanshin Crater. I. Irghizites, Petrology, 2016, vol. 24, no. 1, pp. 1–20.

    Article  Google Scholar 

  • Gornostaeva, T.A., Mokhov, A.V., Kartashov, P.M., and Bogatikov, O.A. Condensate glasses from the Zhamanshin crater. II. Zhamanshinites, Petrology, 2017, vol. 1, no. 1, pp. 1–22.

    Article  Google Scholar 

  • Gornostaeva, T.A., Mokhov, A.V., Kartashov, P.M., and Bogatikov, O.A., Condensate constituent in impact glasses of the Zhamanshin Crater, Dokl. Earth Sci., 2015, vol. 464, pp. 924–927.

    Article  Google Scholar 

  • Gornostaeva T.A., Mokhov A.V., Kartashov P.M., and Bogatikov, O.A., The protective role of glass film over the surface of metallic particles of the lunar regolith, Dokl. Earth Sci., 2014, vol. 459, pp. 1457–1459.

    Article  Google Scholar 

  • Grieve, R.A.F., Terrestrial impact: the record in the rocks, Meteoritics, 1991, vol. 26, no. 3, pp. 175–194.

    Article  Google Scholar 

  • Izokh, E.P. and Le Dyk An, Tektites of Vietnam. Hypothesis of comet transportation, Meteoritika, 1983, vol. 42, pp. 158–169.

    Google Scholar 

  • Izokh, E.P., Petrochemistry of target rocks, impactites, and tektites of the Zhamanshin astrobleme, Kosmicheskoe veshchestvo i Zemlya (Cosmic Matter and the Earth), Novosibirsk: Nauka, 1986, pp. 159–203.

    Google Scholar 

  • Jonasova, S., Ackerman, L., Zak, K., et al., Geochemistry of impact glasses and target rocks from the Zhamanshin impact structure, Geochim. Cosmochim. Acta, 2016, vol. 190, pp. 239–264.

    Article  Google Scholar 

  • Kapustkina, I.G. and Feldman, V.I., Fractionation of meteoritic substance in the impact process, Geokhimiya, 1988, no. 11, pp. 1547–1557.

    Google Scholar 

  • Kartashov, P.M., Gornostaeva, T.A., Mokhov A.V., and Bogatikov, O.A., The natural high-pressure phase of cubic CdSe in impact glass from Zhamanshin Crater, Dokl. Earth Sci. 2016, vol. 467, pp. 412–414.

    Article  Google Scholar 

  • Kiryukhin, L.G., Florenskii, P.V., and Sobolev, Yu.S., A mystery of Zhamanshin, Priroda, 1969, no. 3, p. 70.

    Google Scholar 

  • Kleinmann, B., Magnetite bearing spherules in tektites, Geochim. Cosmochim. Acta, 1969, vol. 33, no. 9, pp. 1113–1120.

    Article  Google Scholar 

  • Koeberl, C. and Shirey, S.B., Detection of a meteoritic component in ivory coast tektites with rhenium-osmium isotopes, Science, 1993, vol. 261, no. 5121, pp. 595–598.

    Article  Google Scholar 

  • Kolesov, G.M., Identification of cosmic (meteoritic) substance from the trace element abundance, Kosmicheskoe veshchestvo na Zemle (Cosmic Substance on the Earth), Kiev: Nauk. Dumka, 1982, pp. 38–46.

    Google Scholar 

  • Larionov, M.Yu., Comparative study of phosphides (Fe,Ni)3P of diverse morphology extracted from the Sikhote Alin iron meteorite, in XI Mezhdunarodnaya nauchnotekhnicheskaya Ural’skaya shkola-seminar molodykh uchenykh-metallovedov (XI International Scientific–Technical Uralian School–Seminar of Young Metal Physicist), Yekaterinburg, 2010, pp. 218–220.

    Google Scholar 

  • Lushnipov, A.A., Negin, A.E., Pakhomov, A.V., and Smirnov, B.M., Aerogel structures in gas, Usp. Fiz. Nauk, 1991, vol. 161, pp. 113–123.

    Article  Google Scholar 

  • Maier, W.D., Andreoli, M.A.G., McDonald, I., et al., Discovery of a 25-cm asteroid clast in the giant Morokweng impact crater, South Africa, Nature, 2006, vol. 441, no. 7090, pp. 203–206.

    Google Scholar 

  • Margolis, S.V., Claeys, P., and Kyte, F.T., Microtektites, microcrystites, and spinels from a Late Pliocene asteroid impact in the southern ocean, Science, 1991, vol. 251, no. 5001, pp. 1594–1597.

    Article  Google Scholar 

  • Markova O.M., Yakovlev O.I., Semenov G.A., and Belov A.N., Some general results of experiments on evaporation of natural melts in a Knudsen cell, Geokhimiya, 1986, no. 11, pp. 1559–1569.

    Google Scholar 

  • Masaitis, V.L., Danilin, A.N., Mashchak, M.S., et al., Geologiya astroblem (Geology of Astroblemes), Leningrad: Nedra, 1980.

    Google Scholar 

  • Mason, B., Handbook of Elemental Abundances in Meteorites, New York: Gorgon Breach, 1971.

    Google Scholar 

  • Mizera, J., Randa, Z., and Tomandl, I., Geochemical characterization of impact glasses from the Zhamanshin crater by various modes of activation analysis. Remarks on genesis of irghizites, J. Radioanal. Nucl. Chem., 2012, vol. 293, no. 1, pp. 359–376.

    Article  Google Scholar 

  • Mokhov, A.V., Analytical electron microscopy in studying ultradispersed fraction of regolith, I Vseross. mol. konf. “Mineraly, stroenie, svoistva, metody issledovaniya” (1rst All-Russian Conference “Minerals, Structure, Properties, and Methods of Study), Il’meny, 2009, p. 42.

    Google Scholar 

  • Palatnik, L.S., Fuks, M.Ya., and Kosevich, V.M., Mekhanizm obrazovaniya i substruktura kondensirovannykh plenok (Mechanism of Formation of Substructure of Condensed Films), Moscow: Nauka, 1972.

    Google Scholar 

  • Palme, H., Jansens, M.-J., Takahashi, H., et al., Meteoritic material at five large impact craters, Geochim. Cosmochim. Acta, 1978, vol. 42, no. 3, pp. 313–324.

    Article  Google Scholar 

  • Papike, J.J., Spilde, M.N., Fowler, G.W., et al., The Lodran primitive achondrite: petrogenetic insights from electron and ion microprobe analysis of olivine and orthopyroxene, Geochim. Cosmochim. Acta, 1995, vol. 59, no. 14, pp. 3061–3070.

    Article  Google Scholar 

  • Pierazzo, E. and Melosh, H.J., Hydrocode modelling of Chicxulub as an oblique impact event, Earth Planet. Sci. Lett., 1999, vol. 165, no. 2, pp. 163–176.

    Article  Google Scholar 

  • Razin, L.V., Rudashevskii, N.S., and Vyal’sov, L.N., New natural intermetallic compounds of aluminum, copper, and zinc: khatyrkite CuAl2, kupalite CuAl, and zinc aluminide, from hyperbasites of the dunite–harzburgite association, Zap. Vseross. Mineral. O-va, 1985, vol. 114, no. 1, pp. 90–100.

    Google Scholar 

  • Reid, A.M., Park, F.R., and Cohen, A.J., Synthetic metallic spherules in a philippine tektite, Geochim. Cosmochim. Acta, 1964, vol. 28, no. 6, pp. 1004–1010.

    Article  Google Scholar 

  • Rietmeijer, F.J.M., Nuth, J.A., Rochette, P., et al., Deep metastable eutectic condensation in Al–Fe–SiO–H2–O2 vapors: implications for natural Fe-aluminosilicates, Am. Mineral., 2006, vol. 91, pp. 1688–1698.

    Article  Google Scholar 

  • Samson, C., Butler, S., Fry, C., et al., 3-D laser images of splash-form tektites and their use in aerodynamic numerical simulations of tektite formation, Meteorit. Planet. Sci., 2014, vol. 49, no. 5, pp. 740–749.

    Article  Google Scholar 

  • Skublov, G.T. and Tyugai, O.M., Petrochemical model of the formation of tektite-like glasses of the Zhamanshin crater and its relation with lunar impact genesis, Zap. Vseross. Mineral. O-va, 2004, vol. 133, no. 6, pp. 95–117.

    Google Scholar 

  • Svettsov, V.V., Interaction of cosmic bodies with the Earth’s atmosphere and surface, Candidate (Fiz.-Mat.) Dissertation, Moscow: Inst. Cinamiki Geosfer RAN, 2008.

    Google Scholar 

  • Taylor, S.R. and McLennan, S.M., Chemical relationships among irghizites, Zhamanshinites, Australasian tektites and Henbury impact glasses, Geochim. Cosmochim. Acta, 1979, vol. 43, no. 9, pp. 1551–1565.

    Article  Google Scholar 

  • Thorpe, A.N. and Senftle, F.E., Submicroscopic spherules and color of tektites, Geochim. Cosmochim. Acta, 1964, vol. 28, no. 6, pp. 981–994.

    Article  Google Scholar 

  • Val’ter, A.A., Geochemical signs of impactite contamination by meteorite matter, Kosmicheskoe veshchestvo na Zemle (Cosmic Matter on the Earth), Kiev: Nauk. dumka, 1982, pp. 104–110.

    Google Scholar 

  • Val’ter, A.A. and Ryabenko, V.A., Vzryvnye kratery Ukrainskogo shchita (Explosion Craters of the Ukrainian Shield), Kiev: Nauk. dumka, 1977.

    Google Scholar 

  • Vêtviĉka, I., Frank, J., and Drtina, J., Electron microprobe analysis (WDS EPMA) of Zhamanshin glass reveals the impactor and a common role of accretion in the origin of splash-form impact glass, in 11th European Workshop on Modern Developments and Applications in Microbeam Analysis, 2010. IOP Conf Ser: Materials Science and Engineering, 2010, vol. 7, no. 1, 012029.

    Google Scholar 

  • Yakovlev, O.I., Dikov, Yu.P., Gerasimov, M.V., et al., Experimental investigation of factors controlling the composition of glasses from the lunar regolith, Geochem. Int., 2003, vol. 41, no. 5, pp. 417–430.

    Google Scholar 

  • Yudin, I.A. and Kolomenskii, V.D., Mineralogiya meteoritov (Mineralogy of Meteorites), Sverdlovsk: UNTs AN SSSR, 1987.

    Google Scholar 

  • Zamyshlyaev B.V., Maslin E.P., Loborev V.M., Shilobreev B.A. Fizika yadernogo vzryva (Physics of Nuclear Blasts). T.1. M.: Fizmatlit, 1997. 552 s.

    Google Scholar 

  • Zbik, M., Jasieniak, M., and Smart, R.St.C., Organo silane occurrence in irghizite samples from the Zhamanshin impact crater, Kazakhstan, Meteorit. Planet. Sci, 2000, vol. 35, no. 5, pp. 943–947.

    Article  Google Scholar 

  • Zel’dovich B., Raizer Yu. Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii (Physics of Blast Pressure Waves and High-Temperature Hydrodynamic Phenomena). M.: Fizmatlit, 2008. 656 s.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Mokhov.

Additional information

Original Russian Text © T.A. Gornostaeva, A.V. Mokhov, P.M. Kartashov, O.A. Bogatikov, 2018, published in Petrologiya, 2018, Vol. 26, No. 1, pp. 92–106.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gornostaeva, T.A., Mokhov, A.V., Kartashov, P.M. et al. Impactor Type and Model of the Origin of the Zhamanshin Astrobleme, Kazakhstan. Petrology 26, 82–95 (2018). https://doi.org/10.1134/S0869591118010046

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591118010046

Navigation