Skip to main content
Log in

β2-adrenergic receptor maladaptations to high power resistance exercise overreaching

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The effects of a recovery drink on overreaching induced by high frequency, high power resistance exercise was assessed. Resistance trained men were assigned to a supplemented (SUP, n = 8), placebo (PL, n = 3) or control (CON, n = 6) groups. All groups completed two weeks of familiarization training using the barbell squat. In week three, SUP and PL performed ten sets of five repetitions of speed squats twice daily, for a total of 15 training sessions. CON maintained their prior training schedule. Data were collected before week three (T1), after week three (T2) and after a week of recovery by training cessation (T3). During week three, SUP consumed an amino acid, carbohydrate and creatine monohydrate containing recovery drink immediately after each training bout. PL was provided a drink of similar appearance and taste but containing minimal nutritional value. At T2, both SUP and PL decreased mean squat velocity and power at 70% 1RM. Additionally, SUP and PL decreased muscle β2-adrenergic receptor (β2-AR) expression by 61 and 83%, respectively. Increases in the ratio of nocturnal urinary epinephrine/β2-AR ratio (EPI: β2AR) for SUP and PL suggested impaired sympathetic nervous system sensitivity. SUP demonstrated a smaller decrease in β2-AR expression and a lower EPI: β2AR, suggesting the recovery drink attenuated the detrimental effects of overreaching on the sympathetic activity. In conclusion, high power resistance exercise overreaching can induce performance decrements and impair sympathetic activity, but these effects may be attenuated by supplementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Meeusen, R. et al., Prevention, diagnosis, and treatment of the overtraining syndrome: Joint consensus statement of the European College of Sport Science and the American College of Sports Medicine, Med. Sci. Sports Exercise, 2013, vol. 45, no. 1, p. 186.

    Article  Google Scholar 

  2. Lehmann, M., Foster, C., and Keul, J., Overtraining in endurance athletes: A brief review, Med. Sci. Sports Exercise, 1993, vol. 25, no. 7, p. 854.

    Article  CAS  Google Scholar 

  3. Fry, A.C. et al., Performance decrements with highintensity resistance exercise overtraining, Med. Sci. Sports Exercise, 1994, vol. 26, no. 9, p. 1165.

    Article  CAS  Google Scholar 

  4. Fry, A.C. et al., Beta2-Adrenergic receptor downregulation and performance decrements during high-intensity resistance exercise overtraining, J. Appl. Physiol., 2006, vol. 101, no. 6, p. 1664.

    Article  CAS  PubMed  Google Scholar 

  5. Moore, C.A. and Fry, A.C., Nonfunctional overreaching during off-season training for skill position players in collegiate American football, J. Strength Cond. Res., 2007, vol. 21, no. 3, p. 793.

    PubMed  Google Scholar 

  6. Lehmann, M., et al., Training-overtraining: Performance, and hormone levels, after a defined increase in training volume versus intensity in experienced middle and long-distance runners, Br. J. Sports Med., 1992, vol. 26, no. 4, p. 233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lehmann, M. et al., Autonomic imbalance hypothesis and overtraining syndrome, Med. Sci. Sports Exercise, 1998, vol. 30, no. 7, p. 1140.

    Article  CAS  Google Scholar 

  8. Andersson, D.C. et al., Stress-induced increase in skeletal muscle force requires protein kinase A phosphorylation of the ryanodine receptor, J. Physiol., 2012, vol. 590, no. 24, p. 6381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cairns, S.P. and Dulhunty, A.F., The effects of betaadrenoceptor activation on contraction in isolated fastand slow-twitch skeletal muscle fibres of the rat, Br. J. Pharmacol., 1993, vol. 110, no. 3, p. 1133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Murphy, R.J. et al., Chronic beta-blockade increases skeletal muscle beta adrenergic-receptor density and enhances contractile force, J. Appl. Physiol., 1997, vol. 83, no. 2, p. 459.

    CAS  PubMed  Google Scholar 

  11. Williams, J.H. and Barnes, W.S., The positive inotropic effect of epinephrine on skeletal muscle: A brief review, Muscle Nerve, 1989, vol. 12, no. 12, p. 968.

    Article  CAS  PubMed  Google Scholar 

  12. Fry, A.C., Kraemer, W.J., and Ramsey, L.T., Pituitaryadrenal-gonadal responses to high-intensity resistance exercise overtraining, J. Appl. Physiol., 1998, vol. 85, no. 6, p. 2352.

    CAS  PubMed  Google Scholar 

  13. Hakkinen, K. et al., Relationships between training volume, physical performance capacity, and serum hormone concentrations during prolonged training in elite weight lifters, Int. J. Sports Med., 1987, vol. 8, no. 1, p. 61.

    Article  CAS  PubMed  Google Scholar 

  14. Kraemer, W.J. et al., The effects of amino acid supplementation on hormonal responses to resistance training overreaching, Metabolism, 2006, vol. 55, no. 3, p. 282.

    Article  CAS  PubMed  Google Scholar 

  15. Ratamess, N.A. et al., The effects of amino acid supplementation on muscular performance during resistance training overreaching, J. Strength Cond. Res., 2003, vol. 17, no. 2, p. 250.

    PubMed  Google Scholar 

  16. Sharp, C.P. and Pearson, D.R., Amino acid supplements and recovery from high intensity resistance training, J. Strength Cond. Res., 2010, vol. 24, no. 4, p. 1125.

    Article  PubMed  Google Scholar 

  17. Halson, S.L. et al., Effects of carbohydrate supplementation on performance and carbohydrate oxidation after intensified cycling training, J. Appl. Physiol., 2004, vol. 97, no. 4, p. 1245.

    Article  CAS  PubMed  Google Scholar 

  18. Achten, J. et al., Higher dietary carbohydrate content during intensified running training results in better maintenance of performance and mood state, J. Appl. Physiol., 2004, vol. 96, no. 4, p. 1331.

    Article  CAS  PubMed  Google Scholar 

  19. Kraemer, W.J., Ratamess, N.A., and French, D.N., Strength training: Development and evaluation of methodology, in Physiological Assessment of Human Fitness, Maud, P.J. and Foster, C., Eds., Human Kinetics: Champaign, IL, 2006, p. 119.

    Google Scholar 

  20. Evans, W.J., Phinney, S.D., and Young, V.R., Suction applied to a muscle biopsy maximizes sample size, Med. Sci. Sports Exercise, 1982, vol. 14, no. 1, p. 101.

    CAS  Google Scholar 

  21. Staron, R.S. and Hikida, R.S., Histochemical, biochemical, and ultrastructural analyses of single human muscle fibers, with special reference to the C-fiber population, J. Histochem. Cytochem., 1992, vol. 40, no. 4, p. 563.

    Article  CAS  PubMed  Google Scholar 

  22. Fry, A.C. et al., Catecholamine responses to shortterm high-intensity resistance exercise overtraining, J. Appl. Physiol., 1994, vol. 77, no. 2, p. 941.

    CAS  PubMed  Google Scholar 

  23. Lehmann, M. et al., Decreased nocturnal catecholamine excretion: Parameter for an overtraining syndrome in athletes?, Int. J. Sports Med., 1992, vol. 13, no. 3, p. 236.

    Article  CAS  PubMed  Google Scholar 

  24. Raastad, T. et al., Changes in human skeletal muscle contractility and hormone status during 2 weeks of heavy strength training, Eur. J. Appl. Physiol., 2001, vol. 84, nos. 1–2, p. 54.

    Article  CAS  PubMed  Google Scholar 

  25. Gagnon, A.W., Kallal, L., and Benovic, J.L., Role of clathrin-mediated endocytosis in agonist-induced down-regulation of the beta2-adrenergic receptor, J. Biol. Chem., 1998, vol. 273, no. 12, p. 6976.

    Article  CAS  PubMed  Google Scholar 

  26. Vasudevan, N.T. et al., Regulation of beta-adrenergic receptor function: An emphasis on receptor resensitization, Cell Cycle, 2011, vol. 10, no. 21, p. 3684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jost, J., Weiss, M., and Weicker, H., Sympathoadrenergic regulation and the adrenoceptor system, J. Appl. Physiol., 1990, vol. 68, no. 3, p. 897.

    CAS  PubMed  Google Scholar 

  28. Izawa, T. et al., Beta-adrenergic receptor adaptation after an acute exercise in rat myocardium, Jpn. J. Physiol., 1989, vol. 39, no. 3, p. 447.

    Article  CAS  PubMed  Google Scholar 

  29. Nieto, J.L. et al., Adaptations of the beta-adrenoceptor- adenylyl cyclase system in rat skeletal muscle to endurance physical training, Pfluegers Arch., 1997, vol. 434, no. 6, p. 809.

    Article  CAS  Google Scholar 

  30. Sato, S. et al., Synthesized glucocorticoid, dexamethasone regulates the expressions of beta(2)-adrenoceptor and glucocorticoid receptor mRNAs but not proteins in slow-twitch soleus muscle of rats, J. Toxicol. Sci., 2011, vol. 36, no. 4, p. 479.

    Article  CAS  PubMed  Google Scholar 

  31. Hakkinen, K. and Pakarinen, A., Serum hormones in male strength athletes during intensive short term strength training, Eur. J. Appl. Physiol. Occup. Physiol., 1991, vol. 63, nos. 3–4, p. 194.

    Article  CAS  PubMed  Google Scholar 

  32. Fry, A.C. et al., Endocrine responses to overreaching before and after 1 year of weightlifting, Can. J. Appl. Physiol., 1994, vol. 19, no. 4, p. 400.

    Article  CAS  PubMed  Google Scholar 

  33. Hakkinen, K. et al., Serum hormone concentrations during prolonged training in elite endurance-trained and strength-trained athletes, Eur. J. Appl. Physiol. Occup. Physiol., 1989, vol. 59, no. 3, p. 233.

    Article  CAS  PubMed  Google Scholar 

  34. Haff, G.G. et al., Carbohydrate supplementation and resistance training, J. Strength Cond. Res., 2003, vol. 17, no. 1, p. 187.

    PubMed  Google Scholar 

  35. Philp, A., Hargreaves, M., and Baar, K., More than a store: Regulatory roles for glycogen in skeletal muscle adaptation to exercise, Am. J. Physiol.: Endocrinol. Metab., 2012, vol. 302, no. 11, p. e1343.

    CAS  Google Scholar 

  36. Steensberg, A. et al., Muscle glycogen content and glucose uptake during exercise in humans: Influence of prior exercise and dietary manipulation, J. Physiol., 2002, vol. 541, p. 273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gulick, T. et al., Interleukin 1 and tumor necrosis factor inhibit cardiac myocyte beta-adrenergic responsiveness, Proc. Natl. Acad. Sci. U. S. A., 1989, vol. 86, no. 17, p. 6753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Deminice, R. et al., Effects of creatine supplementation on oxidative stress and inflammatory markers after repeated-sprint exercise in humans, Nutrition, 2013, vol. 29, no. 9, p. 1127.

    Article  CAS  PubMed  Google Scholar 

  39. Stefani, G.P. et al., Effects of creatine supplementation associated with resistance training on oxidative stress in different tissues of rats, J. Int. Soc. Sports Nutr., 2014, vol. 11, no. 1, p. 11.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. C. Fry.

Additional information

Original Russian Text © A.J. Sterczala, A.C. Fry, L.Z.F. Chiu, B.K. Schilling, L.W. Weiss, J.X. Nicoll, 2017, published in Fiziologiya Cheloveka, 2017, Vol. 43, No. 4, pp. 103–113.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sterczala, A.J., Fry, A.C., Chiu, L.Z.F. et al. β2-adrenergic receptor maladaptations to high power resistance exercise overreaching. Hum Physiol 43, 446–454 (2017). https://doi.org/10.1134/S0362119717040144

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119717040144

Keywords

Navigation