Skip to main content
Log in

Role of hormones in regulating sodium transporters in the kidney: Modulation of phosphorylation, traffic, and expression

  • Reviews
  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The review focuses on the key sodium transporters involved in maintaining water–salt balance in the kidney. The topography of sodium transporters is discussed. Specifics of the hormone-dependent regulation, including phosphorylation, traffic, and expression, are considered for particular transporters. Special attention is paid to direct intracellular regulators of the transporter function. The role that dopamine plays as a natriuretic factor in modulating the function of various transporters is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Palmer, L.G. and Schnermann, J., Integrated control of Na transport along the Nephron, Clin. J. Am. Soc. Nephrol., 2015, vol. 10, no. 4, p. 676.

    Article  CAS  PubMed  Google Scholar 

  2. Staruschenko, A., Regulation of transport in the connecting tubule and cortical collecting duct, Compr. Physiol., 2012, vol. 2, no. 2, p. 1541.

    PubMed  PubMed Central  Google Scholar 

  3. Taub, M., Springate, J.E., and Cutuli, F., Targeting of renal proximal tubule Na+/K+-ATPase by salt-inducible kinase, Biochem. Biophys. Res. Commun., 2010, vol. 393, no. 3, p. 339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Efendiev, R., Krmar, R.T., Ogimoto, G., et al., Hypertension-linked mutation in the adducin alpha-subunit leads to higher AP2-μ2 phosphorylation and impaired Na+/K+-ATPase trafficking in response to GPCR signals and intracellular sodium, Circ. Res., 2004, vol. 95, no. 11, p. 1100.

    Article  CAS  PubMed  Google Scholar 

  5. Procino, G., Romano, F., Torielli, L., et al., Altered expression of renal aquaporins and α-adducin polymorphisms may contribute to the establishment of saltsensitive hypertension, Am. J. Hypertens., 2011, vol. 24, no. 7, p. 822.

    Article  CAS  PubMed  Google Scholar 

  6. Mondini, A., Sassone, F., Civello, D.A., et al., Hypertension- linked mutation of α-adducin increases CFTR surface expression and activity in HEK and cultured rat distal convoluted tubule cells, PLoS One, 2012, vol. 7, no. 12, p. e52014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Periyasamy, S.M., Liu, J., Tanta, F., et al., Salt loading induces redistribution of the plasmalemmal Na+/K+- ATPase in proximal tubule cells, Kidney Int., 2005, vol. 67, no. 5, p. 1868.

    Article  CAS  PubMed  Google Scholar 

  8. Lang, F. and Cohen, P., Regulation and physiological roles of serum- and glucocorticoid-induced protein kinase isoforms, Sci. Signaling, 2001, vol. 108, p. 1.

    Google Scholar 

  9. Lou, Y., Zhang, F., Luo, Y., et al., Serum and glucocorticoid regulated kinase 1 in sodium homeostasis, Int. J. Mol. Sci., 2016, vol. 17, no. 8, p. 1307.

    Article  PubMed Central  Google Scholar 

  10. Salyer, S.A., Parks, J., Barati, M.T., et al., Aldosterone regulates Na+/K+-ATPase activity in human renal proximal tubule cells through mineralocorticoid receptor, Biochim. Biophys. Acta, Mol. Cell Res., 2013, vol. 1833, no. 10, p. 2143.

    Article  CAS  PubMed  Google Scholar 

  11. Fuster, D.G., Bobulescu, I.A., Zhang, J., et al., Characterization of the regulation of renal Na+/H+ exchanger NHE3 by insulin, Am. J. Physiol.: Renal Physiol., 2007, vol. 292, no. 2, p. F577.

    CAS  Google Scholar 

  12. Pao, A.C., Bhargava, A., Di Sole, F., et al., Expression and role of serum and glucocorticoid-regulated kinase 2 in the regulation of Na+/H+ exchanger 3 in the mammalian kidney, Am. J. Physiol.: Renal Physiol., 2010, vol. 299, no. 6, p. F1496.

    CAS  Google Scholar 

  13. Hurley, J.H. and Stenmark, H., Molecular mechanisms of ubiquitin-dependent membrane, Annu. Rev. Biophys., 2012, vol. 40, p. 119.

    Article  Google Scholar 

  14. Bazúa-Valenti, S., Castañeda-Bueno, M., and Gamba, G., Physiological role of SLC12 family members in the kidney, Am. J. Physiol.: Renal Physiol., 2016, vol. 311, no. 1, p. 131.

    Google Scholar 

  15. Zhuo, J.L. and Li, X.C., Proximal nephron, Compr. Physiol., 2013, vol. 3, no. 3, p. 1079.

    PubMed  PubMed Central  Google Scholar 

  16. Golembiewska, E. and Ciechanowski, K., Renal tubular acidosis–underrated problem?, Acta Biochim. Pol., 2012, vol. 59, no. 2, p. 213.

    CAS  PubMed  Google Scholar 

  17. Wagner, C.A., Mohebbi, N., Capasso, G., and Geibel, J.P., The anion exchanger pendrin (SLC26A4) and renal acid-base homeostasis, Cell. Physiol. Biochem., 2011, vol. 28, no. 3, p. 497.

    Article  CAS  PubMed  Google Scholar 

  18. Aperia, A., To serve and protect: Classic and novel roles for Na+, K+-adenosine triphosphatase, J. Am. Soc. Nephrol., 2012, vol. 23, no. 8, p. 1283.

    Article  CAS  PubMed  Google Scholar 

  19. Aperia, A., Ibarra, F., Svensson, L.B., et al., Calcineurin mediates alpha-adrenergic stimulation of Na+/K+-ATPase activity in renal tubule cells, Proc. Natl. Acad. Sci. U. S. A., 1992, vol. 89, no. 16, p. 7394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Aperia, A., Holtbäck, U., Syrén, M.L., et al., Activation/ deactivation pathway of renal Na+/K+-ATPase: A final common pathway for regulation of natriuresis, Res. Commun., 1994, vol. 8, no. 6, p. 436.

    CAS  Google Scholar 

  21. Yu, M., Lopez, B., Dos Santos, E.A., et al., Effects of 20-HETE on Na+ transport and Na+/K+-ATPase in the thick ascending loop of Henle, Am. J. Physiol.: Regul., Integr. Comp. Physiol., 2007, vol. 292, no. 6, p. 2400.

    Google Scholar 

  22. Varela, M., Herrera, M., and Garvin, J.L., Inhibition of Na+/K+-ATPase in thick ascending limbs by NO depends on O2– and is diminished by a high-salt diet, Am. J. Physiol.: Renal Physiol., 2004, vol. 287, no. 2, p. 224.

    Google Scholar 

  23. Bełtowski, J., Wjcicka, G., Górny, D., and Marciniak, A., Human leptin administered intraperitoneally stimulates natriuresis and decreases renal medullary Na+/K+- ATPase activity in the rat–impaired effect in dietaryinduced obesity, Med. Sci. Monit. Basic Res., 2002, vol. 8, no. 6, p. 221.

    Google Scholar 

  24. Sampaio, L.S., Taveira, Da., Silva, R., Lima, D., et al., The endocannabinoid system in renal cells: Regulation of Na(+) transport by CB1 receptors through distinct cell signalling pathways, Br. J. Pharmacol., 2015, vol. 72, no. 19, p. 4615.

    Article  Google Scholar 

  25. Ontomo, Y., Ono, S., Zettergren, E., and Sahlgren, B., Neuropeptide Y regulates rat renal tubular Na+/K+- ATPase through several signalling pathways, Acta Physiol. Scand., 1996, vol. 158, no. 1, p. 97.

    Article  Google Scholar 

  26. Morla, L., Crambert, G., Mordasini, D., et al., Proteinase- activated receptor 2 stimulates Na+/K+- ATPase and sodium reabsorption in native kidney epithelium, J. Biol. Chem., 2008, vol. 283, no. 42, p. 28020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Obradovic, M., Bjelogrlic, P., Rizzo, M., et al., Effects of obesity and estradiol on Na+/K+-ATPase and their relevance to cardiovascular diseases, J. Endocrinol., 2013, vol. 218, no. 3, p. R13.

    Article  CAS  PubMed  Google Scholar 

  28. Ciano, L.A.Di., Azurmendi, P.J., Toledo, J.E., et al., Ovariectomy causes overexpression of renal Na+/K+- ATPase and sodium-sensitive hypertension in adult Wistar rats, Clin. Exp. Hypertens., 2013, vol. 35, no. 7, p. 475.

    Article  PubMed  Google Scholar 

  29. Galuska, D., Pirkmajer, S., Barrès, R., et al., C-peptide increases Na+/K+-ATPase expression via PKC- and MAP kinase-dependent activation of transcription factor ZEB in human renal tubular cells, PLoS One, 2011, vol. 6, no. 12, p. e28294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Summa, V., Camargo, S.M., Bauch, C., et al., Isoform specificity of human Na+/K+-ATPase localization and aldosterone regulation in mouse kidney cells, J. Physiol., 2003, vol. 555, no. 2, p. 355.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Khundmiri, S.J., Ameen, M., Delamere, N.A., and Lederer, E.D., PTH-mediated regulation of Na+/K+- ATPase requires Src kinase-dependent ERK phosphorylation, Am. J. Physiol.: Renal Physiol., 2008, vol. 40202, p. 426.

    Google Scholar 

  32. Khundmiri, S.J., Bertorello, A.M., Delamere, N.A., and Lederer, E.D., Clathrin-mediated endocytosis of Na+/K+-ATPase in response to parathyroid hormone requires ERK-dependent phosphorylation of Ser-11 within the α1-Subunit, J. Biol. Chem., 2004, vol. 279, no. 17, p. 17418.

    Article  CAS  PubMed  Google Scholar 

  33. Cui, J., Li, X., Duan, Z., et al., Analysis of Kif5b expression during mouse kidney development, PLoS One, 2015, vol. 10, no. 4, p. e0126002.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ramseyer, V.D., Ortiz, P.A., Carretero, O.A., and Garvin, J.L., Angiotensin II-mediated hypertension impairs nitric oxide-induced NKCC2 inhibition in thick ascending limbs, Am. J. Physiol.: Renal Physiol., 2016, vol. 310, no. 8, p. F748.

    CAS  Google Scholar 

  35. Féraille, E. and Doucet, A., Sodium-potassium-adenosinetriphosphatase-dependent sodium transport in the kidney?: Hormonal control, Physiol. Rev., 2001, vol. 81, no. 1, p. 345.

    PubMed  Google Scholar 

  36. Caceres, P.S., Mendez, M., Haque, M.Z., and Ortiz, P.A., Vesicle-associated membrane protein 3 (VAMP3) mediates constitutive trafficking of the renal co-transporter NKCC2 in thick ascending limbs: Role in renal function and blood pressure, J. Biol. Chem., 2016, vol. 3, no. 3, p. 22063.

    Article  Google Scholar 

  37. Mount, D.B., Renal physiology thick ascending limb of the loop of Henle, Clin. J. Am. Soc. Nephrol., 2014, vol. 9, no. 11, p. 1974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gerbino, A., Schena, G., Milano, S., et al., Spilanthol from Acmella Oleracea lowers the intracellular levels of cAMP impairing NKCC2 phosphorylation and water channel AQP2 membrane expression in mouse kidney, PLoS One, 2016, vol. 11, no. 5, p. e0156021.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhang, J., Rudemiller, N.P., Patel, M.B., et al., Interleukin- 1 receptor activation potentiates salt reabsorption in angiotensin II-induced hypertension via the NKCC2 Co-transporter in the nephron, Cell Metab., 2016, vol. 23, no. 2, p. 360.

    Article  CAS  PubMed  Google Scholar 

  40. Markadieu, N. and Delpire, E., Physiology and pathophysiology of SLC12A1/2 transporters, Pfluegers Arch., 2014, vol. 466, no. 1, p. 91.

    Article  CAS  Google Scholar 

  41. Knepper, M., Kwon, T.-H., and Nielsen, S., Molecular physiology of water balance, N. Engl. J. Med., 2015, vol. 372, no. 14, p. 1349.

    Article  CAS  PubMed  Google Scholar 

  42. Ye, T., Liu, Z.Q., Sun, C.F., et al., Altered expression of renal bumetanide-sensitive sodium-potassium-2 chloride cotransporter and Cl- channel-K2 gene in angiotensin II-infused hypertensive rats, Chin. Med. J., 2005, vol. 118, no. 23, p. 1945.

    CAS  PubMed  Google Scholar 

  43. Mutig, K., Saritas, T., Uchida, S., et al., Short-term stimulation of the thiazide-sensitive Na+-Cl- cotransporter by vasopressin involves phosphorylation and membrane translocation, Am. J. Physiol.: Renal Physiol., 2010, vol. 298, no. 3, p. F502.

    CAS  Google Scholar 

  44. Hoover, R.S., Tomilin, V., Hanson, L., et al., PTH modulation of NCC activity regulates TRPV5 Ca2+- reabsorption, Am. J. Physiol.: Renal Physiol., 2016, vol. 310, no. 2, p. F144.

    CAS  Google Scholar 

  45. Lin, C.-H., Hu, H.-J., and Hwang, P.-P., Cortisol regulates sodium homeostasis by stimulating the transcription of sodium-chloride transporter (NCC) in zebrafish (Danio rerio), Mol. Cell. Endocrinol., 2016, vol. 422, p. 93.

    Article  CAS  PubMed  Google Scholar 

  46. Gailly, P., Szutkowska, M., Olinger, E., et al., P2Y2 receptor activation inhibits the expression of the sodium-chloride cotransporter NCC in distal convoluted tubule cells, Pfluegers Arch., 2014, vol. 466, no. 11, p. 2035.

    Article  CAS  Google Scholar 

  47. Roos, K.P., Bugaj, V., Mironova, E., et al., Adenylyl cyclase VI mediates vasopressin-stimulated ENaC activity, J. Am. Soc. Nephrol., 2013, vol. 24, no. 2, p. 218.

    Article  CAS  PubMed  Google Scholar 

  48. Hills, C., Bland, R., Bennett, J., et al., High glucose up-regulates ENaC and SGK1 expression in HCDcells, Cell. Physiol. Biochem., 2006, vol. 18, no. 6, p. 337.

    Article  CAS  PubMed  Google Scholar 

  49. Greenlee, M.M., Mitzelfelt, J.D., Duke, B.J., et al., Prolactin stimulates sodium and chloride ion channels in A6 renal epithelial cells, Am. J. Physiol.: Renal Physiol., 2015, vol. 308, no. 7, p. F697.

    CAS  Google Scholar 

  50. Lu, C., Pribanic, S., Debonneville, A., et al., The PY motif of ENaC, mutated in liddle syndrome, regulates channel internalization, sorting and mobilization from subapical pool, Traffic, 2007, vol. 8, no. 9, p. 1246.

    Article  CAS  PubMed  Google Scholar 

  51. Wen, D., Yuan, Y., Warner, P.C., et al., Increased epithelial sodium channel activity contributes to hypertension caused by Na+-HCO3-cotransporter electrogenic 2 deficiency, Hypertension, 2015, vol. 66, no. 1, p. 68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. McDonough, A., Mechanisms of proximal tubule sodium transport regulation that link extracellular fluid volume and blood pressure, Am. J. Physiol.: Regul., Integr. Comp. Physiol., 2010, vol. 298, no. 4, p. R851.

    CAS  Google Scholar 

  53. de Morais, C.P., Polidoro, J.Z., Ralph, D.L., et al., Proximal tubule NHE-3 activity is inhibited by betaarrestin-biased angiotensin II type 1 receptor signaling, Am. J. Physiol.: Cell Physiol., 2015, vol. 309, no. 33, p. 541.

    Article  Google Scholar 

  54. Lee, Y.J. and Han, H.J., Regulatory mechanisms of Na+/glucose cotransporters in renal proximal tubule cells, Kidney Int., 2007, vol. 72, p. 27.

    Article  Google Scholar 

  55. Amemiya, M., Kusano, E., Muto, S., et al., Glucagon acutely inhibits but chronically activates Na(+)/H(+) antiporter 3 activity in OKP cells, Exp. Nephrol., 2002, vol. 10, no. 1, p. 26.

    Article  CAS  PubMed  Google Scholar 

  56. Lee, J., Ha, J.H., Kim, S., et al., Caffeine decreases the expression of Na+/K+-ATPase and the type 3 Na +/H+-exchanger in rat kidney, Clin. Exp. Pharmacol. Physiol., 2002, vol. 29, p. 559.

    Article  CAS  PubMed  Google Scholar 

  57. Fenton, R.A., Poulsen, S.B., de la Mora, Chavez S., et al., Caffeine-induced diuresis and natriuresis is independent of renal tubular, Am. J. Physiol.: Ren. Physiol., 2015, vol. 308, no. 12, p. F1409.

    CAS  Google Scholar 

  58. Kurtz, I. and Zhu, Q., Proximal renal tubular acidosis mediated by mutations in NBCe1-A: Unraveling the transporter’s structure-functional properties, Front. Physiol., 2013, vol. 4, p. 350.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ferlazzo, A., Carvalho, E.S., Gregorio, S.F., et al., Prolactin regulates luminal bicarbonate secretion in the intestine of the sea bream (Sparus aurata L.), J. Exp. Biol., 2012, vol. 215, no. 21, p. 3836.

    Article  CAS  PubMed  Google Scholar 

  60. Sonalker, P.A., Tofovic, S.P., Bastacky, S.I., and Jackson, E.K., Chronic noradrenaline increases renal expression of NHE-3, NBC-1, BSC-1 and aquaporin-2, Clin. Exp. Pharmacol. Physiol., 2008, vol. 35, p. 594.

    Article  CAS  PubMed  Google Scholar 

  61. Ali, R., Amlal, H., Burnham, C.E., and Soleimani, M., Glucocorticoids enhance the expression of the basolateral Na+/HCO3-cotransporter in renal proximal tubules, Kidney Int., 2000, vol. 57, no. 3, p. 1063.

    Article  CAS  PubMed  Google Scholar 

  62. Vrhovac, I., Balen, Eror D., Klessen, D., et al., Localizations of Na+-D-glucose cotransporters SGLT1 and SGLT2 in human kidney and of SGLT1 in human small intestine, liver, lung and heart, Eur. J. Physiol., 2014, vol. 467, no. 9, p. 1881.

    Article  Google Scholar 

  63. Ghezzi, C. and Wright, E.M., Regulation of the human Na+-dependent glucose cotransporter hSGLT2, Am. J. Physiol.: Cell Physiol., 2012, vol. 303, no. 3, p. C348.

    Article  CAS  Google Scholar 

  64. Andrianesis, V. and Doupis, J., The role of kidney in glucose inhibitors, a new approach in diabetes treatment, Expert Rev. Clin. Pharmacol., 2013, vol. 6, no. 5, p. 519.

    Article  CAS  PubMed  Google Scholar 

  65. Su, M., Mu, X., Gui, L., et al., Dopamine regulates renal osmoregulation during hyposaline stress via DRD1 in the spotted scat (Scatophagus argus), Sci. Rep., 2016, vol. 6, p. 37535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ibarra, F., Crambert, S., Eklof, A.C., et al., Prolactin, a natriuretic hormone, interacting with the renal dopamine system, Kidney Int., 2005, vol. 68, no. 4, p. 1700.

    Article  CAS  PubMed  Google Scholar 

  67. Crambert, S., Sjöberg, A., Eklöf, A.C., et al., Prolactin and dopamine 1-like receptor interaction in renal proximal tubular cells, Am. J. Physiol.: Renal Physiol., 2010, vol. 299, no. 1, p. F49.

    CAS  Google Scholar 

  68. Zhang, L.-N., Li, J.X., Hao, L., et al., Crosstalk between dopamine receptors and the Na+/K+-ATPase (Review), Mol. Med. Rep., 2013, vol. 8, no. 5, p. 1291.

    CAS  PubMed  Google Scholar 

  69. Jiang, X., Chen, W., Liu, X., et al., The synergistic roles of cholecystokinin B and dopamine D5 receptors on the regulation of renal sodium excretion, PLoS One, 2016, vol. 11, no. 1, p. e0146641.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zhang, M.-Z. and Harris, R.C., Current antihypertensive mechanisms of intra-renal dopamine, Curr. Opin. Nephrol. Hypertens., 2015, vol. 24, no. 2, p. 117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Atkinson, K.F., Kathem, S.H., Jin, X., et al., Dopaminergic signaling within the primary cilia in the renovascular system, Front. Physiol., 2015, vol. 6, p. 103.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Brismar, H., Agren, M., and Holtback, U., β-adrenoceptor agonist sensitizes the dopamine-1 receptor in renal tubular cells, Acta Physiol. Scand., 2002, vol. 175, no. 4, p. 333.

    Article  CAS  PubMed  Google Scholar 

  73. Smirnova, O.V., Osmoregulatory function of prolactin in fish and its projection on mammals, Usp. Fiziol. Nauk, 2011, vol. 42, no. 4, p. 59.

    CAS  PubMed  Google Scholar 

  74. Faron-Górecka, A., Kuśmider, M., Solich, J., et al., Involvement of prolactin and somatostatin in depression and the mechanism of action of antidepressant drugs, Pharmacol. Rep., 2013, vol. 65, no. 6, p. 1640.

    Article  PubMed  Google Scholar 

  75. Ben-Jonathan, N., LaPensee, C.R., and LaPensee, E.W., What can we learn from rodents about prolactin in humans?, Endocr. Rev., 2008, vol. 29, no. 1, p. 1.

    Article  CAS  PubMed  Google Scholar 

  76. Chen, Y., Asico, L.D., Zheng, S., et al., Gastrin and D1 dopamine receptor interact to induce natriuresis and diuresis, Hypertension, 2013, vol. 62, no. 5, p. 927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Salomone, L.J., Howell, N.L., McGrath, H.E., et al., Intrarenal dopamine D1-like receptor stimulation induces natriuresis via an angiotensin type-2 receptor mechanism, Hypertension, 2007, vol. 49, no. 1, p. 155.

    Article  CAS  PubMed  Google Scholar 

  78. Bacic, D., Capuano, P., Baum, M., et al., Activation of dopamine D1-like receptors induces acute internalization of the renal Na+/phosphate cotransporter NaPi-IIa in mouse kidney and OK cells, Am. J. Physiol.: Renal Physiol., 2005, vol. 288, no. 4, p. F740.

    CAS  Google Scholar 

  79. Gildea, J.J., Shah, I.T., Van Sciver, R.E., et al., The cooperative roles of the dopamine receptors, D1R and D5R, on the regulation of renal sodium transport, Kidney Int., 2014, vol. 86, no. 1, p. 118.

    CAS  PubMed  Google Scholar 

  80. Wang, X., Luo, Y., Escano, C.S., et al., Upregulation of renal sodium transporters in D5 dopamine receptordeficient mice, Hypertension, 2010, vol. 55, no. 6, p. 1431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Abramicheva.

Additional information

Original Russian Text © P.A. Abramicheva, O.V. Smirnova, 2017, published in Fiziologiya Cheloveka, 2017, Vol. 43, No. 4, pp. 134–149.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abramicheva, P.A., Smirnova, O.V. Role of hormones in regulating sodium transporters in the kidney: Modulation of phosphorylation, traffic, and expression. Hum Physiol 43, 474–487 (2017). https://doi.org/10.1134/S0362119717040028

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119717040028

Keywords

Navigation