Skip to main content
Log in

Non-renormalization theorems in maximal supergravity

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

The control over nonabelian gauge invariances at the quantum level, which Andrei Alekseevich Slavnov brilliantly pioneered, plays a critical role in the study of the ultraviolet problem both in gauge theories and in theories of gravity. The recent dramatic cancellations of divergent contributions to certain BPS counterterm structures in maximal supergravity require a careful revisit of the applicable nonrenormalization theorems, based on local gauge invariances and on duality symmetries. In the end, these suffice to explain all the BPS counterterm cancellations found to date in maximal supergravity, both in four and in higher spacetime dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. ’t Hooft and M. Veltman, “One-Loop Divergencies in the Theory of Gravitation,” Ann. Inst. Henri Poincaré A: Phys. Théor. 20, 69–94 (1974).

    Google Scholar 

  2. D. Z. Freedman, P. van Nieuwenhuizen, and S. Ferrara, “Progress toward a Theory of Supergravity,” Phys. Rev. D 13, 3214–3218 (1976).

    Article  MathSciNet  Google Scholar 

  3. S. Deser and B. Zumino, “Consistent Supergravity,” Phys. Lett. B 62, 335–337 (1976).

    Article  MathSciNet  Google Scholar 

  4. E. Cremmer, B. Julia, J. Scherk, S. Ferrara, L. Girardello, and P. van Nieuwenhuizen, “Spontaneous Symmetry Breaking and Higgs Effect in Supergravity without Cosmological Constant,” Nucl. Phys. B 147, 105–131 (1979).

    Article  Google Scholar 

  5. S. Deser, J. H. Kay, and K. S. Stelle, “Renormalizability Properties of Supergravity,” Phys. Rev. Lett. 38, 527–530 (1977).

    Article  Google Scholar 

  6. R. E. Kallosh, “Counterterms in Extended Supergravities,” Phys. Lett. B 99, 122–127 (1981).

    Article  MathSciNet  Google Scholar 

  7. P. S. Howe, K. S. Stelle, and P. K. Townsend, “Superactions,” Nucl. Phys. B 191, 445–464 (1981).

    Article  Google Scholar 

  8. P. S. Howe, K. S. Stelle, and P. K. Townsend, “Miraculous Ultraviolet Cancellations in Supersymmetry Made Manifest,” Nucl. Phys. B 236, 125–166 (1984).

    Article  MathSciNet  Google Scholar 

  9. P. S. Howe, K. S. Stelle, and P. K. Townsend, “The Relaxed Hypermultiplet: An Unconstrained N = 2 Superfield Theory,” Nucl. Phys. B 214, 519–531 (1983).

    Article  Google Scholar 

  10. S. Mandelstam, “Light-Cone Superspace and the Ultraviolet Finiteness of the N = 4 Model,” Nucl. Phys. B 213, 149–168 (1983).

    Article  MathSciNet  Google Scholar 

  11. L. Brink, O. Lindgren, and B. E. W. Nilsson, “The Ultra-violet Finiteness of the N = 4 Yang-Mills Theory,” Phys. Lett. B 123, 323–328 (1983).

    Article  Google Scholar 

  12. Z. Bern, M. Czakon, L. J. Dixon, D. A. Kosower, and V. A. Smirnov, “Four-Loop Planar Amplitude and Cusp Anomalous Dimension in Maximally Supersymmetric Yang-Mills Theory,” Phys. Rev. D 75, 085010 (2007); arXiv: hep-th/0610248.

    Article  MathSciNet  Google Scholar 

  13. Z. Bern, J. J. Carrasco, L. J. Dixon, H. Johansson, D. A. Kosower, and R. Roiban, “Cancellations beyond Finiteness in N = 8 Supergravity at Three Loops,” Phys. Rev. Lett. 98, 161303 (2007); arXiv: hep-th/0702112.

    Article  Google Scholar 

  14. Z. Bern, J. J. Carrasco, L. J. Dixon, H. Johansson, and R. Roiban, “Ultraviolet Behavior of N = 8 Supergravity at Four Loops,” Phys. Rev. Lett. 103, 081301 (2009); arXiv: 0905.2326 [hep-th].

    Article  Google Scholar 

  15. Z. Bern, L. Dixon, D. C. Dunbar, and D. A. Kosower, “One-Loop n-Point Gauge Theory Amplitudes, Unitarity and Collinear Limits,” Nucl. Phys. B 425, 217–260 (1994); arXiv: hep-ph/9403226.

    Article  MathSciNet  MATH  Google Scholar 

  16. Z. Bern, L. Dixon, D. C. Dunbar, M. Perelstein, and J. S. Rozowsky, “On the Relationship between Yang-Mills Theory and Gravity and Its Implication for Ultraviolet Divergences,” Nucl. Phys. B 530, 401–456 (1998); arXiv: hep-th/9802162.

    Article  Google Scholar 

  17. Z. Bern, J. J. M. Carrasco, L. J. Dixon, H. Johansson, and R. Roiban, “Manifest Ultraviolet Behavior for the Three-Loop Four-Point Amplitude of N = 8 Supergravity,” Phys. Rev. D 78, 105019 (2008); arXiv: 0808.4112 [hep-th].

    Article  Google Scholar 

  18. N. Berkovits, “New Higher-Derivative R 4 Theorems for Graviton Scattering,” Phys. Rev. Lett. 98, 211601 (2007); arXiv: hep-th/0609006.

    Article  MathSciNet  Google Scholar 

  19. M. B. Green, J. G. Russo, and P. Vanhove, “Ultraviolet Properties of Maximal Supergravity,” Phys. Rev. Lett. 98, 131602 (2007); arXiv: hep-th/0611273.

    Article  Google Scholar 

  20. M. B. Green, J. G. Russo, and P. Vanhove, “String Theory Dualities and Supergravity Divergences,” J. High Energy Phys., No. 6, 075 (2010); arXiv: 1002.3805 [hep-th].

  21. R. Kallosh, “On a Possibility of a UV Finite N = 8 Supergravity,” arXiv: 0808.2310 [hep-th].

  22. P. S. Howe and K. S. Stelle, “The Ultraviolet Properties of Supersymmetric Field Theories,” Int. J. Mod. Phys. A 4, 1871–1912 (1989).

    Article  MathSciNet  Google Scholar 

  23. P. S. Howe, G. Papadopoulos, and K. S. Stelle, “The Background Field Method and the Non-linear σ-Model,” Nucl. Phys. B 296, 26–48 (1988).

    Article  MathSciNet  Google Scholar 

  24. N. Marcus and A. Sagnotti, “The Ultraviolet Behavior of N = 4 Yang-Mills and the Power Counting of Extended Superspace,” Nucl. Phys. B 256, 77–108 (1985).

    Article  Google Scholar 

  25. L. Baulieu, N. Berkovits, G. Bossard, and A. Martin, “Ten-Dimensional Super-Yang-Mills with Nine Off-shell Supersymmetries,” Phys. Lett. B 658, 249–254 (2008); arXiv: 0705.2002 [hep-th].

    Article  MathSciNet  Google Scholar 

  26. G. Bossard, P. S. Howe, and K. S. Stelle, “The Ultra-violet Question in Maximally Supersymmetric Field Theories,” Gen. Relativ. Gravit. 41, 919–981 (2009); arXiv: 0901.4661 [hep-th].

    Article  MathSciNet  MATH  Google Scholar 

  27. J. M. Drummond, P. J. Heslop, P. S. Howe, and S. F. Kerstan, “Integral Invariants in N = 4 SYM and the Effective Action for Coincident D-Branes,” J. High Energy Phys., No. 8, 016 (2003); arXiv: hep-th/0305202.

  28. J. M. Drummond, P. J. Heslop, and P. S. Howe, “A Note on N = 8 Counterterms,” arXiv: 1008.4939 [hep-th].

  29. P. S. Howe and K. S. Stelle, “Supersymmetry Counterterms Revisited,” Phys. Lett. B 554, 190–196 (2003); arXiv: hep-th/0211279.

    Article  MathSciNet  MATH  Google Scholar 

  30. G. Bossard, P. S. Howe, and K. S. Stelle, “On Duality Symmetries of Supergravity Invariants,” arXiv: 1009.0743 [hep-th].

  31. G. Bossard, C. Hillmann, and H. Nicolai, “E 7(7) Symmetry in Perturbatively Quantised N = 8 Supergravity,” arXiv: 1007.5472 [hep-th].

  32. J. Brödel and L. J. Dixon, “R 4 Counterterm and E 7(7) Symmetry in Maximal Supergravity,” J. High Energy Phys., No. 5, 003 (2010); arXiv: 0911.5704 [hep-th].

  33. H. Elvang and M. Kiermaier, “Stringy KLT Relations, Global Symmetries, and E 7(7)-Violation,” arXiv: 1007.4813 [hep-th].

  34. P. Howe and U. Lindström, “Higher Order Invariants in Extended Supergravity,” Nucl. Phys. B 181, 487–501 (1981).

    Article  Google Scholar 

  35. N. Marcus, “Composite Anomalies in Supergravity,” Phys. Lett. B 157, 383–388 (1985).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stelle, K.S. Non-renormalization theorems in maximal supergravity. Proc. Steklov Inst. Math. 272, 246–255 (2011). https://doi.org/10.1134/S0081543811010238

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543811010238

Keywords

Navigation