Skip to main content
Log in

Prospects for Progress in Developing Production Processes for the Synthesis of Olefins Based on Light Alkanes

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Catalytic processes and production facilities for the production of olefins based on light alkanes and various oil fractions are reviewed. Modern traditional industrial technologies for the pyrolysis and cracking of various hydrocarbon feedstocks and alternative catalytic processes for the production of olefins from methanol (MTO), coal (CTO), the oxidative dimerization of methane into ethylene (OCM), the Fischer–Tropsch process (FTO), and the dehydrogenation of C2–C5 hydrocarbons are discussed. Designs of catalytic reactors, optimal modes of their industrial operation, and efficient industrial catalytic systems are described. The activity and selectivity of new zeolite-containing catalysts based on Pt, as well as on Cr, V, Mo, Ga oxides and Co, Ni, Sn, Ce, In, Cu, Zn, and Fe, in the dehydrogenation of light alkanes are analyzed. The effects of the nature of the active sites of the catalysts, the structure and properties of the substrate, and the methods of preparation of catalysts on the efficiency of their operation in the reactions of nonoxidative and oxidative dehydrogenation of C2–C5 alkanes are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Chen, S., Chang, X., Sun, G., Zhang, T., et al., Propane dehydrogenation: Catalyst development, new chemistry, and emerging technologies, Chem. Soc. Rev., 2021, vol. 5, p. 3315.

    Article  Google Scholar 

  2. Liu, S., Zhang, B., and Liu, G., Metal-based catalysts for the non-oxidative dehydrogenation of light alkanes to light olefins, React. Chem. Eng., 2021, vol. 6, no. 1, p. 9.

    Article  CAS  Google Scholar 

  3. Sattler, J.J., Ruiz-Martinez, J., Santillan-Jimenez, E., and Weckhuysen, B.M., Catalytic dehydrogenation of light alkanes on metals and metal oxides, Chem. Rev., 2014, vol. 519, no. 114, p. 10613.

    Article  Google Scholar 

  4. Levin, V.O., Potekhin, V.M., and Kudimova, M.V., Production of lower olefins as a basis for the development of gas and oil chemistry in Russia, Neftepererab. Neftekhim., 2017, vol. 4, p. 28.

    Google Scholar 

  5. Pogosyan, N.M., Pogosyan, M.D., Shapovalova, O.V., Strekova, L.N., et al., New approaches to the production of light olefins from gas feedstock, Neftegazokhimiya, 2016, vol. 2, p. 38.

    Google Scholar 

  6. Volkova, A.V., Market of Basic Petrochemical Products: Olefins and Aromatic Hydrocarbons, Moscow: Vysshaya shkola ekonomiki, 2019.

  7. Volkova, A.V., Market of Large-Scale Polymers, Moscow: Vysshaya shkola ekonomiki, 2020.

  8. Boulamanti, A. and Moya, J.A., Production costs of the chemical industry in the EU and other countries: Ammonia, methanol and light olefins, Renewable Sustainable Energy Rev., 2017, vol. 68, p. 1205.

    Article  CAS  Google Scholar 

  9. Zhao, Z., Jiang, J., and Wang, F., An economic analysis of twenty light olefin production pathways, J. Energy Chem., 2021, vol. 56, p. 193.

    Article  CAS  Google Scholar 

  10. Amghizar, I., Vandewalle, L.A., Van Geem, K.M., and Marin, G.B., New trends in olefin production, Engineering, 2017, vol. 3, p. 171.

    Article  CAS  Google Scholar 

  11. Barrasa, C., Light olefins market trends, 2020. https://ihsmarkit.com/topic/light-olefins-market-trends.html

  12. Lewandowski, S., The next wave of regional ethylene capacity additions. https://ihsmarkit.com/research-analysis/ethylene-capacity.html. Accessed August 13, 2018.

  13. Ethylene production in Russia increased by 40% in 2020, RUPEC. https://rupec.ru/news/46298/. Accessed March 3, 2021.

  14. hagfarov, F.G. and Geyasi, P.A., Current state of ethylene production, Bulatovskie Chteniya, 2018, vol. 5, p. 88

    Google Scholar 

  15. Braginskii, O.B., Ethylene continues to be the most important basic semiproduct of the world petrochemical industry, Neftegazokhimiya, 2016, no. 2, p. 14.

  16. Nizhnekamskneftekhim: Ethylene-600 will be commissioned on time despite the pandemic, PAO Nizhnekamskneftekhim. www.nknh.ru/pressroom/publications/ nizhnekamskneftekhim-etilen-600-budet-vveden-v-srok-nesmotrya-na-pandemiyu/. Accessed July 27, 2020.

  17. SIBUR and SINOPEC set up a joint venture on the basis of the Amur Gas Chemical Complex. PAO SIBUR Holding. www.sibur.ru/press-center/news/SIBUR-i-SINOPEC-sozdali-sovmestnoe-predpriyatie-na-baze-Amurskogo-gazokhimicheskogo-kompleksa. Accessed December 28, 2020.

  18. Lavrenov, A.V., Saifulina, L.F., Buluchevskii, E.A., and Bogdanets, E.N., Propylene production technologies: Today and tomorrow, Katal. Prom-sti., 2015, vol. 15, no. 3, p. 6.

    Google Scholar 

  19. Russia’s first UOP propylene plant reaches design capacity, helping to reduce global propylene shortage, Honeywell. ngv.ru/pr/pervaya-ustanovka-proizvodstva-propilena-po-tekhnologii-uop-v-rossii-vyshla-na-proektnuyu-moshchnost/. Accessed December 19, 2014.

  20. We are in SIBUR, OOO ZapSibNeftekhim website, 2021. www.sibur.ru/zapsibneftekhim/about/in_sibur/ www.sibur.ru/zapsibneftekhim/about/in_sibur/

  21. Rustam Minnikhanov launched three new production facilities at TANECO, PAO Tatneft. www.tatneft.ru/. Accessed May 26, 2021.

  22. Sadygov, F.M., Magerramova, Z.Yu., Gadzhiev, G.N., Gasanzade, G.G., et al., Process conditions of the plant of thermal pyrolysis of hydrocarbons in combination with the qualitative composition of heavy resin, Neftepererab. Neftekhim., 2018, no. 5, p. 11.

  23. Erofeev, V.I. and Maskaev, G.P., Production of lower olefins from hydrocarbon feedstock: Thermal pyrolysis of straight-run gasolines, Mezhdunar. Zh. Prikl. Fundam. Issled., 2015, no. 8-5, p. 880.

  24. Erofeev, V.I. and Maskaev, G.P., Production of lower olefins from hydrocarbon feedstock: Thermal co-pyrolysis of NGL and straight-run gasoline, Mezhdunar. Zh. Prikl. Fundam. Issled., 2015, no. 9-2, p. 260.

  25. Erofeev, V.I. and Maskaev, G.P., Production of lower olefins from hydrocarbon feedstock: Thermal co-pyrolysis of ethane fraction and straight-run gasoline, Mezhdunar. Zh. Prikl. Fundam. Issled., 2015, no. 9-2, p. 264.

  26. Erofeev, V.I. and Maskaev, G.P., Production of lower olefins from hydrocarbon feedstock: Thermal pyrolysis of NGL, Mezhdunar. Zh. Prikl. Fundam. Issled., 2015, no. 9-1, p. 88.

  27. Demidenko, M.N., Magaril, R.Z., and Magaril, E.R., Replacement of steam by hydrogen in pyrolysis, Izv. Vyssh. Uchebn. Zaved., Neft Gaz, 2014, no. 6, p. 95.

  28. Men’shchikov, V.A., Gol’dshtein, L.Kh., and Semenov, I.P., Pyrolysis in hydrogen flow: Technology and economics, Izv. Vyssh. Uchebn. Zaved., Neft Gaz, 2014, no. 6, p. 102.

  29. Safin, D.Kh., Zaripov, R.T., Safarov, R.A., Kalimullin, F.M., et al., Some features of co-pyrolysis of ethane and liquefied hydrocarbon gases, Vestn. Tekhnol. Univ., 2020, vol. 23, no. 7, p. 49.

    Google Scholar 

  30. Aliev A.M., Tairov A.Z., Guseinova A.M., and Ismailov N.R. Optimal control of process of pyrolysis of paraffinic hydrocarbons C2–C4 and their mixtures, Theor. Found. Chem. Eng., 2013, vol.47. № 4. P. 406.

    Article  CAS  Google Scholar 

  31. Ktalkherman M.G., Emel’kin V.A., and Namyatov I.G. Effect of governing parameters on pyrolysis of liquefied petroleum gases in the high-temperature heat carrier, Theor. Found. Chem. Eng., 2013, vol. 47, no. 6, p. 667.

    Article  CAS  Google Scholar 

  32. Morozov, A.Yu., Karatun, O.N., and El’tsova, A.S., Production of low-molecular-weight olefins in catalytic pyrolysis of gasoline fraction, Neftepererab. Neftekhim., 2014, no. 1, p. 15.

  33. Khafizov, I.F. and Musin, R.R., Modern trends in the development of process, Vestn. Tekhnol. Univ., 2015, vol. 18, no. 2, p. 231.

    CAS  Google Scholar 

  34. Chudinov, A.N., Ryabov, V.G., and Pershin, D.V., Effect of the composition and properties of raw components of catalytic cracking on the propylene yield, Vestn. Permsk. Nats. Issled. Politekh. Univ.: Khim. Tekhnol. Biotekhnol., 2020, no. 1, p. 40.

  35. Gantsev, A.V. and Vinichenko, M.V., Current state and prospects for the development of catalytic cracking of petroleum feedstock, Universum: Khim. Biol., 2019, vol. 66, no. 12, p. 68.

    Google Scholar 

  36. Khalaizade, T.R.O. and Yusubov, F.V.O., Mathematical modeling of catalytic cracking, Bulatovskie Chteniya, 2020, vol. 5, p. 307.

    Google Scholar 

  37. Aliyev, A.M., Safarov, A.R., Osmanova, I.I., Guseynova, A.M., and Balayev, I.V., Ensuring the stability of operation of the ethylene region of a chemical and technological complex for processing gases of cracking and pyrolysis by taking into account the dynamics of the processes, Theor. Found. Chem. Eng., 2020, vol. 54, no. 5, p. 805.

    Article  CAS  Google Scholar 

  38. Aliev, A.M., Safarov, A.R., Osmanova, I.I., Guseinova, A.M., and Mamedov, Z.A., Optimal design of a chemical-technological complex for coprocessing cracking and pyrolysis gases, Theor. Found. Chem. Eng., 2018, vol. 52, no. 6, p. 956.

    Article  Google Scholar 

  39. Aliev, A.M., Safarov, A.R., and Guseinova, A.M., Calculation of ethylene region of chemical technological complex for processing of cracking and pyrolysis gases, Theor. Found. Chem. Eng., 2017, vol. 51, no. 4, p. 404.

    Article  CAS  Google Scholar 

  40. Aliev, A.M., Safarov, A.R., and Guseinova, A.M., Full calculation of a chemical-technological complex for processing of cracking and pyrolysis gases based on the kinetic models of the processes, Theor. Found. Chem. Eng., 2017, vol. 51, no. 5, p. 716.

    Article  Google Scholar 

  41. Mukhina, T.V., Barabanov, N.L., and Babash, S.E., Pyrolysis of Hydrocarbon Raw Materials, Moscow: Khimiya, 1987.

    Google Scholar 

  42. Arapov, D.V., Tikhomirov, S.G., Podval’nyi, S.L., Kuritsyn, V.A., and Karmanova, O.V., Mathematical modeling of industrial processes of gasoline pyrolysis in tubular furnaces, Teor. Osn. Khim. Tekhnol., 2018, vol. 52, no. 6, p. 649.

    Google Scholar 

  43. Aliev, A.M., Tairov, A., Guseinova, A.M., Ismailov, N.R., and Shakhtakhtinskii, T.N., Optimum zoned fuel gas supply to the coil of an ethane pyrolysis furnace, Theor. Found. Chem. Eng., 2010, vol. 44, no. 6, p. 913.

    Article  CAS  Google Scholar 

  44. Bondaletov, V.G. and Bondaletova, L.I., Improving the efficiency of high-temperature processes for producing lower olefins via deep-processing of by-products, Resour.-Effic. Technol., 2016, vol. 2, p. 186.

    Google Scholar 

  45. Petrochemist's Handbook, Moscow: Khimiya, 1978.

  46. Arapov, D.V., Optimization of SRT-VI pyrolysis furnaces of high-capacity ethylene plant, Theor. Found. Chem. Eng., 2020, vol. 54, no. 2, p. 357.

    Article  CAS  Google Scholar 

  47. Astaf'eva, I.N. and Pisarenko, V.N., Modeling of high-temperature pyrolysis of heavy hydrocarbon raw materials, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Teknol., 1989, vol. 32, no. 8, p. 102.

    CAS  Google Scholar 

  48. Astaf'eva, I.N. and Pisarenko, V.N., Numerical study of the flow of a multicomponent reacting medium in a high-temperature pyrolysis reactor, Available from VINITI, no. 3840-89, June 6, 1989, Ref. Zh., Khim., 1990, no. 4.

  49. Dadaeva, G.Ch., Yusif-zade, A.A., and Mamedkhanova, S.A., Catalytic pyrolysis on Azerbaijan zeolits, Theor. Appl. Sci., 2020, vol. 82, no. 2, p. 48.

    Article  Google Scholar 

  50. Tsadkin, M.A., Kolesov, S.V., Khabibullin, R.R., and Gimaev, R.N., Industrial catalysts based on barium chloride for pyrolysis of hydrocarbon raw materials, Neftekhimiya, 2005, vol. 45, no. 2, p. 126.

    CAS  Google Scholar 

  51. Chalov, K.V., Lugovoi, Yu.V., and Kosivtsov, Yu.Yu., Simulation of pyrolysis of still bottoms in the presence of aluminosilicates, Vestn. Tver. Gos. Univ., Ser. Khim., 2020, vol. 42, no. 4, p. 27.

    Google Scholar 

  52. Bukharkin, A.K., Catalytic pyrolysis of kerosene fraction in the presence of initiating additives, Nauka Tekhnol. Uglevodorodov, 2003, no. 3, p. 10.

  53. Pisarenko, E.V., Ponomaryov, A.B., Ilinova, A.A., and Pisarenko, V.N., Modeling the process of purifying ethylene from acetylene hydrocarbons over palladium nanocatalysts, Theor. Found. Chem. Eng., 2020, vol. 54, no. 3, p. 446.

    Article  CAS  Google Scholar 

  54. Pisarenko, E.V., Ponomarev, A.B., and Pisarenko, V.N., Studying the selective methylacetylene hydrogenation reaction in methylacetylene–propylene mixtures on palladium oxide nanocatalysts, Theor. Found. Chem. Eng., 2021, vol. 55, no. 3, p. 380.

    Article  CAS  Google Scholar 

  55. Pisarenko, E.V., Ponomarev, A.B., Mamchenkov, N.A., Ilinova, A.A., and Pisarenko, V.N., Modeling of highly selective process of ethylene production from ethane–ethylene fractions of pyrolysis gasses, 23rd International Congress of Chemical and Process Engineering and 21st Conference on Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction—PRES 2018, Praha, Czech Republic, 25–29 August, 2018, no. 1, p. 85.

  56. Ibragimov, Ch.Sh. and Gulieva, S.N., Production of high-purity isobutane and isobutylene in an engineering system with recirculation blocks, Theor. Found. Chem. Eng., 2020, vol. 54, no. 3, p. 376.

    Article  Google Scholar 

  57. Pinaeva, L.G., Doronin, V.P., Belyi, A.S., Lavrenov A.V., et al., Modern catalysts for oil refining: Scientific and technical level and provision of Russian catalysts to enterprises of the fuel and energy sector of Russia, Mir Nefteprod., 2020, no. 2, p. 6.

  58. Fakhroleslam, M. and Sadrameli, S.M., Thermal/catalytic cracking of hydrocarbons for the production of olefins: A state-of-the-art review III: Process modeling and simulation, Fuel, 2019, vol. 252, p. 553.

    Article  CAS  Google Scholar 

  59. Altynkovich, E.O., Potapenko, O.V., Sorokina, T.P., Doronin, V.P., et al., Cracking of butane-butylene fraction on modified ZSM-5 zeolite, Neftekhimiya, 2017, vol. 57, no. 2, p. 156.

    Google Scholar 

  60. Liu, Zh.L., Vang, I.D., Zhang, R., Liu, Kh.I., et al., Deep catalytic cracking of model compounds of various classes of light hydrocarbons on a mesoporous catalyst based on ZSM-5 zeolite, Neftekhimiya, 2017, vol. 57, no. 2, p. 149.

    Google Scholar 

  61. Khomyakov, I.S., Bozhenkova, G.S., and Bragina, O.O., Investigation of catalytic activity of modified high-silica zeolite of MFI type in the process of converting straight-run gasoline, Theor. Found. Chem. Eng., 2018, vol. 52, no. 5, p. 832.

    Article  CAS  Google Scholar 

  62. Erofeev, V.I., Khomyakov, I.S., and Egorova, L.A., Production of high-octane gasoline from straight-run gasoline on ZSM-5 modified zeolites, Theor. Found. Chem. Eng., 2014, vol. 48, no. 1, p. 71.

    Article  CAS  Google Scholar 

  63. Vogt, E.T.C. and Weckhuysen, B.M., Fluid catalytic cracking: Recent developments on the grand old lady of zeolite catalysis, Chem. Soc. Rev., 2015, vol. 44, p. 7342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Freiman, L.L., Oil refining catalyst market. Part II: Production, Vestn. Khim. Prom-sti, 2017, vol. 97, no. 4, p. 18.

    Google Scholar 

  65. Doronin, V.P., Sorokina, T.P., Lipin, P.V., Potapenko, O.V., et al., Development and implementation of zeolite-containing cracking catalysts with a controlled content of rare earth elements, Katal. Prom-sti., 2014, no. 5, p. 9.

  66. Kresling, P., Development catalysts, Sib. Neft, 2020, no. 76, p. 40.

  67. FCC catalysts, BASF. catalysts.basf.com/products-and-industries/process-catalysts/fcc-refining-catalysts. Accessed May 30, 2021.

  68. FCC Catalyst Applications, GRACE. https://grace.com/catalysts-and-fuels/en-us/fcc-catalysts. Accessed May 30, 2021.

  69. Fluid catalytic cracking, PAO Albemarle. www.albemarle.com/businesses/catalysts/fluid-catalytic-cracking. Accessed May 30, 2021.

  70. Kopylov, A.Yu. and Arslanov, R.M., Deep integration of petrochemical and oil refining industries based on modern technologies as a new industry trend, Khim. Prom-st. Segodnya, 2020, no. 5, p. 32.

  71. Oil Refining: Informative Technical Guide to Best Available Techniques, Moscow: Byuro NTD, 2017.

  72. Sinopec's DCC-PLUS technology successfully applied in Thailand, Focus Catal., 2016, no. 7, p. 3.

  73. Indmax Fluid Catalytic Cracking for Maximum Olefins, Mcdermott. www.mcdermott.com/getattachment/a851f30f-a504-4174-9f40-62fb6c047f16/FCC-for-Maximum-Olefins.asp. Accessed May 30, 2021.

  74. Falco, M., New catalytic processes for production of olefins, Oil & gas portal. http://www.oil-gasportal.com/new-catalytic-process-for-production-of-olefins/. Accessed May 30, 2021.

  75. Vermeiren, W., Andersen, J., James, R., and Wei, D., Meeting the changes needs of the light olefins market, Hydrocarbon Eng., 2003, October.

  76. Propylene, Neftegazov. Tekhnol., 2005, no. 10, p. 82.

  77. Akah, A. and Al-Ghrami, M., Maximizing propylene production via FCC technology, Appl. Petrochem. Res., 2015, vol. 5, p. 377.

    Article  CAS  Google Scholar 

  78. HS-FCC High Severity FCC, Axens. www.axens.net/product/process-licensing/11004/hs-fcc-high-severity-fcc.html. Accessed May 30, 2021.

  79. Cryomax DCP (dual-column propane recovery), Neftegazov. Tekhnol., 2004, no. 4, p. 40.

  80. Gasification technology, Shell PLC. https://www.shell.com/business-customers/catalysts-technologies/licensed-technologies/refinery-technology/gasification-technology.html. Accessed June 20, 2022.

  81. Handbook of Petroleum Refining Processes, McGraw-Hill, 2003.

  82. Pisarenko, E.V. and Pisarenko, V.N., Analysis and modeling of synthesis gas conversion to methanol: New trends toward increasing methanol production profitability, Theor. Found. Chem. Eng., 2007, vol. 41, no. 2, p. 105.

    Article  CAS  Google Scholar 

  83. Pisarenko E.V., Pisarenko V.N., Minigulov, R.M., and Abaskuliev D.A., Power- and resource-saving process for producing methanol from natural gas, Theor. Found. Chem. Eng., 2008, vol. 42, no. 1, p. 14.

    Article  Google Scholar 

  84. Wang, S., Zhang, L., Li, S., Qin, Z., et al., Tuning the siting of aluminum in ZSM-11 zeolite and regulating its catalytic performance in the conversion of methanol to olefins, J. Catal., 2019, vol. 377, p. 81.

    Article  CAS  Google Scholar 

  85. Rami, M.D., Taghizadeh, M., and Akhoundzadeh, H., Synthesis and characterization of nano-sized hierarchical porous AuSAPO-34 catalyst for MTO reaction: Special insight on the influence of TX-100 as a cheap and green surfactant, Microporous Mesoporous Mater., 2019, vol. 285, p. 259.

    Article  CAS  Google Scholar 

  86. Wang, X., Li, R., Yuan, F., Li, Z., et al., Excellent catalytic performance for methanol to olefins over SAPO-34 synthesized by controlling hydrothermal temperature, Catal. Commun., 2018, vol. 108, p. 64.

    Article  CAS  Google Scholar 

  87. Aghaei, E. and Haghighi, M., Hydrothermal synthesis of nanostructured Ce-SAPO-34: High-performance and long-lifetime catalyst with various ceria contents for methanol to light olefins conversion, Microporous Mesoporous Mater., 2018, vol. 270, p. 227.

    Article  CAS  Google Scholar 

  88. Dyballa, M., Becker, P., Trefz, D., Klemm, E., et al., Parameters influencing the selectivity to propene in the MTO conversion on 10-ring zeolites: directly synthesized zeolites ZSM-5, ZSM-11, and ZSM-22, Appl. Catal., A, 2016, vol. 510, p. 233.

  89. Han, Z., Zhou, F., Liu, Y., Qiao, K., et al., Synthesis of gallium-containing ZSM-5 zeolites by the seed-induced method and catalytic performance of GaZSM-5 and AlZSM-5 during the conversion of methanol to olefins, J. Taiwan Inst. Chem. Eng., 2019, vol. 103, p. 149.

    Article  CAS  Google Scholar 

  90. Babaeva, T.A., Effect of the nature of rare earth elements on the properties of TsVM-type zeolite in the conversion of methanol, Bashk. Khim. Zh., 2020, vol. 27, no. 2, p. 42.

    Google Scholar 

  91. Pisarenko, E.V. and Pisarenko, V.N., Kinetics of the reaction of olefin synthesis from methanol and dimethyl ether, Theor. Found. Chem. Eng., 2008, vol. 42, no. 6, p. 822.

    Article  CAS  Google Scholar 

  92. Khivrich, E.N., Batova, T.I., Kolesnikova, E.E., Kolesnichenko, N.V., and Turkova, T.V., Effect of the reaction medium on the conversion of dimethyl ether to lower olefins on zeolite catalysts, Khim. Prom-st. Segodnya, 2014, no. 6, p. 9.

  93. Pisarenko, E.V., Pisarenko, V.N., and Sarkisov, P.D., Intensification of natural gas conversion to the key products of petrochemical synthesis and engine fuels, Theor. Found. Chem. Eng., 2009, vol. 43, no. 5, p. 617.

    Article  CAS  Google Scholar 

  94. Piskunov, S.E., Abaskuliev, D.A., and Pisarenko, V.N., A method to produce syngas, RF Patent 2158711, 2000.

  95. Pisarenko, E.V., Pisarenko, V.N., and Abaskuliev, D.A., A method to produce methanol, RF Patent 2472765, 2013.

  96. Pisarenko, V.N., Ban, A.G., and Abaskuliev, D.A., A method to produce methanol, RF Patent 2203214, 2001.

  97. Safin, D.Kh., Minigulov, F.G., Safarov, R.A., Zaripov, R.T., et al., Comparative characterization of technologies for producing ethylene by ethane pyrolysis and MTO methanol conversion, Khim. Prom-st. Segodnya, 2020, no. 2, p. 18.

  98. China launches coal-to-olefins plant (August 28, 2010), Chemical Portal no. 1. chem.ru/news/5724-v-kitae-zapuschen-zavod-po-pererabotke-uglya-v-olefiny.html. Accessed May 30, 2021.

  99. Sutton, M. and Roberts, P., Propylene and ethylene from coal, Neftegazov. Tekhnol., 2007, no. 11, p. 110.

  100. Ye, M., Tian, P., and Liu, Z., DMTO: A sustainable methanol-to-olefins technology, Engineering, 2021, vol. 7, pp. 17–21.

  101. Uzbekistan GTL begin to produce synthetic oil, Spot.uz. https://www.spot.uz/ru/2022/06/20/synthetic-fuel. Accessed June 20, 2022.

  102. Lee, Y.-J., Park, J.-Y., Jun, K.-W., Bae, J.W., and Viswanadham, N., Enhanced production of C2–C4 olefins directly from synthesis gas, Catal. Lett., 2008, nos. 1–2, pp. 149–154.

  103. Dedov, A.G., Makhlin, V.A., Podlesnaya, M.V., Zyskin, A.G., et al., Kinetics, Mathematical modeling, and optimization of the oxidative coupling of methane over a LiMnW/SiO2 catalyst, Theor. Found. Chem. Eng., 2010, vol. 44, no. 1, p. 3.

    Article  Google Scholar 

  104. Men’shchikov, V.A. and Sinev, M.Yu., Production of ethylene from natural gas by oxidative condensation of methane, Katal. Prom-sti., 2005, no. 1, p. 25.

  105. Dedov, A.G., Loktev, A.S., Nipan, G.D., Dorokhov, S.N., et al., Oxidative condensation of methane to ethylene: Effect of the preparation method on the phase composition and catalytic properties of composite materials Li–W–Mn–O–SiO2, Neftekhimiya, 2015, vol. 55, no. 2, p. 171.

    Google Scholar 

  106. Minachev, Kh.M., Usachev, N.Ya., Udut, V.N., and Khodakov, Yu.S., Oxidative condensation of methane: A new way of synthesis of ethane, ethylene, and other hydrocarbons, Usp. Khim., 1988, vol. 8, p. 385.

    Google Scholar 

  107. Babak, V.N., Babak, T.B., Zakiev, S.E., and Kholpanov, L.P., Theoretical study of hydrocarbon dehydrogenation at high temperatures, Theor. Found. Chem. Eng., 2009, vol. 43, no. 1, p. 74.

    Article  CAS  Google Scholar 

  108. Red’kina, A.V., Konovalova, N.D., and Khomenko, K.N., Dehydrogenation of propane on VxOy/H–Ti–MCM-41, Khim., Fiz. Tekhnol. Poverkhn., 2014, vol. 5, no. 2, p. 174.

    Google Scholar 

  109. Varzaneh, A.Z., Moghaddam, M.S., and Darian, J.T., Oxidative dehydrogenation of propane on a vanadium catalyst based on nano-HZSM-5, Neftekhimiya, 2018, vol. 58, no. 1, p. 17.

    Google Scholar 

  110. Turakulova, A.O., Kharlanov, A.N., Levanov, A.V., and Lunin, V.V., Oxidative dehydrogenation of propane on the VOx/CeZrO/Al2O3 supported catalyst, Russ. J. Phys. Chem., 2017, vol. 91, no. 5, p. 814.

    Article  CAS  Google Scholar 

  111. Safronova, S.S., Koval’, L.M., and Erofeev, V.I., Catalytic activity of Ga-containing zeolite catalysts in the coupled reforming of methanol and C3–C4 alkanes, Theor. Found. Chem. Eng., 2008, vol. 42, no. 5, p. 550.

    Article  CAS  Google Scholar 

  112. Bairamgulova, R.I. and Trapeznikova, E.F., Catalysts for dehydrogenation of light alkanes, Neftegazov. Delo, 2019, no. 4, p. 173.

  113. Vakhmistrov, V.E., Ponomarev, A.B., Shostakovskii, M.V., Kalinin, V.N., et al., Redox Modification of high-silica zeolites with chromium via multistep cluster synthesis, Inorg. Mater., 2010, vol. 46, no. 9, p. 978.

    Article  CAS  Google Scholar 

  114. Tedeeva, M.A., Kustov, A.L., Pribytkov, P.V., Strekalova, A.A., et al., Dehydrogenation of propane in the presence of CO2 on supported monometallic MOy/SiO2 and CrOxMOy/SiO2 (M = Fe, Co, and Ni) bimetallic catalysts, Russ. J. Phys. Chem. A, 2021, vol. 95, no. 1, p. 55.

    Article  CAS  Google Scholar 

  115. Agafonov, Yu.A., Gaidai, N.A., and Lapidus, A.L., Propane dehydrogenation on chromium oxide and gallium oxide catalysts in the presence of CO2, Kinet. Catal., 2018, vol. 59, no. 6, p. 744.

    Article  CAS  Google Scholar 

  116. Kotel’nikova, A.Yu., Khlybova, N.V., Kotel’nikov, D.A., and Rudnev, N.A., Modeling of propane dehydrogenation in a tubular reactor by computational fluid dynamics, Bashk. Khim. Zh., 2020, vol. 27, no. 3, p. 91.

    Google Scholar 

  117. Pisarenko, E.V., Ponomarev, A.B., Shostakovskii, M.V., and Shevchenko, A.A., Production of propylene on highly efficient nanocatalysts based on modified zeolites of the MFI type, Usp. Khim. Khim. Tekhnol., 2020, vol. 34, no. 3, p. 89.

    Google Scholar 

  118. Nagiev, A.G. and Mamedov, Dzh.I., The synthesis of the optimal spatial pseudostructures of imitations of the porous structure of a catalyst grain based on the concept of fractals, Theor. Found. Chem. Eng., 2010, vol. 44, no. 3, p. 309.

    Article  CAS  Google Scholar 

  119. Gorovits, B.I., Toikka, A.M., Pisarenko, Yu.A., and Serafimov, L.A., Thermodynamics of heterogeneous systems with chemical interaction, Theor. Found. Chem. Eng., 2006, vol. 40, no. 3, p. 239.

    Article  CAS  Google Scholar 

  120. Volin, Yu.M. and Ostrovskii, G.M., Three phases in the development of computer simulation of chemical engineering systems, Theor. Found. Chem. Eng., 2006, vol. 40, no. 3, p. 281.

    Article  CAS  Google Scholar 

  121. Slin’ko, M.G., History of the Development of Mathematical Modeling of Catalytic Processes and Reactors, Theor. Found. Chem. Eng., 2007, vol. 41, no. 1, p. 13.

    Article  Google Scholar 

  122. Dvoretskii, D.S., Dvoretskii, S.I., and Ostrovskii, G.M., Integrated design of power- and resource-saving chemical processes and process control systems: Strategy, methods, and application, Theor. Found. Chem. Eng., 2008, vol. 42, no. 1, p. 26.

    Article  CAS  Google Scholar 

  123. Kulov, N.N. and Gordeev, L.S., Mathematical modeling in chemical engineering and biotechnology, Theor. Found. Chem. Eng., 2014, vol. 48, no. 3, p. 225.

    Article  CAS  Google Scholar 

  124. CATOFIN propane/butane dehydrogenation, Lummus Technology. https://www.lummustechnology.com/Process-Technologies/Petrochemicals/ Propylene-Production/Propane-Butane-Dehydrogenation. Accessed June 2, 2021.

  125. Kayumov, N.A., Nazarov, A.A., Ponikarov, S.I., and Vilokhina, P.V., Modern industrial processes and equipment for hydrocarbon dehydrogenation, Vestn. Kazan. Tekhnol. Univ., 2013, vol. 16, no. 15, p. 303.

    CAS  Google Scholar 

  126. Catalysts for on-purpose propylene production and the dehydrogenation of hydrocarbons, Clariant. https://www.clariant.com/en/Business-Units/Catalysts/Petrochemical-and-Refining-Catalysts/On_Purpose_Propylene. Accessed June 2, 2021.

  127. Clariant to build new production site for CATOFIN™ catalysts in Jiaxing, Digital Refining Processing, Operation & Maintenance (September 18, 2020). www.digitalrefining.com/news/1006181/clariant-to-build-new-production-site-for-catofin-catalysts-in-jiaxing

  128. Honeywell successfully commissions second C3 Oleflex™ unit for Zhejiang Satellite, Honeywell. https://www.honeywell.com/en-s/newsroom/pressreleases/2019/09/honeywell-successfully-commissions-second-c3-oleflex-unit-for-zhejiang-satellite. Accessed June 2, 2021.

  129. A comparative study between propane dehydrogenation (PDH) technologies and plants in Saudi Arabia, Am. Sci. Res. J. Eng., Technol. Sci., 2018, vol. 4, no. 1, p. 49.

  130. STAR process®—Most reliable dehydrogenation technology for propylene and isobutylene production, ThyssenKrupp AG. https:// www.thyssenkrupp-industrial-solutions.com/en/products-and-services/ chemical-plants-and-processes/dehydrogenation-plants. Accessed June 2, 2021.

  131. The Uhde STAR process: Oxydehydrogenation of light paraffins to olefins. http://www.thyssenkrupp-thde.de/fileadmin/documents/brochures/ uhde_brochures_pdf_en_12.pdf.1

  132. Lopez, J., BASF, Linde plan to jointly develop butadiene technology. http://www.icis.com/resources/ news/2014/06/03/9786384/basf-linde-plan-to-jointly-develop-butadienetechnology/. Accessed June 2, 2021.

  133. Dow to retrofit Louisiana cracker with fluidized catalytic dehydrogenation (FCDh) technology to produce on-purpose propylene hydrocarbons, Dow (August 20, 2019). https://investors.dow.com/en/news/news-details/2019/Dowto-Retrofit-Louisiana-Cracker-With-Fluidized-Catalytic-Dehydrogenation-FCDh-Technology-to-Produce-On-Purpose-Propylene/default.aspx.

  134. K-PROTM—KBR propane dehydrogenation. http://211.81.63.130/cache/9/03/www.refpet.com/ e287efcbfeedd5379272-cb0e86272745/TS-VII-houvikSarkar.pdf.

  135. Ivanushkin, G.G., Smirnov, A.V., Kots, P.A., and Ivanova, I.I., Modification of the acid properties of the support for propane dehydrogenation catalysts Pt–Sn/BEA, Neftekhimiya, 2019, vol. 59, no. 4, p. 453.

    Google Scholar 

  136. Wang, Y., Hu, Z.-H., Lv, X., Chen, L., and Yuan, Z.-Y., Ultra small PtZn bimetallic nanoclusters encapsulated in silicalite-1 zeolite with superior performance for propane dehydrogenation, J. Catal., 2020, vol. 385, p. 61.

    Article  CAS  Google Scholar 

  137. Zhou, W., Liu, J., Wang, J., Lin, L., et al., Transformation of propane over ZnSnPt modified defective HZSM-5 zeolites: The crucial role of hydroxyl nests concentration, Catalysts, 2019, vol. 571, p. 1.

    Google Scholar 

  138. Li, Y.-X., Li, J., Yang, X., Wang, X., et al., Preparation of CeO2-modified Mg(Al)O-supported Pt–Cu alloy catalysts derived from hydrotalcite-like precursors and their catalytic behavior for direct dehydrogenation of propane, Trans. Tianjin Univ., 2019, vol. 25, p. 169.

    Article  CAS  Google Scholar 

  139. Sun, G., Zhao, Z.-J., Mu, R., Zha, S., et al., Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation, Nat. Commun., 2018, vol. 9, p. 4454.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Naseri, M., Zangeneh, F.T., and Taeb, A., The effect of Ce, Zn and Co on Pt-based catalysts in propane dehydrogenation, React. Kinet., Mech. Catal., 2019, vol. 126, p. 477.

    Article  CAS  Google Scholar 

  141. Rimaz, S., Luwei, C., Sibudjing, K., and Borgna, A., Promoting effect of Ge on Pt-based catalysts for dehydrogenation of propane to propylene, Appl. Catal. A, 2019, vol. 588, p. 117.

    Article  Google Scholar 

  142. Bel’skaya, O.B., Nizovskii, A.I., Gulyaeva, T.I., Leont’eva, N.N., and Bukhtiyarov, V.I., Catalysts Pt/(Ga)Al2O3 obtained using aluminum metal activated with gallium, Russ. J. Appl. Chem., 2020, vol. 93, no. 1, p. 118.

    Article  Google Scholar 

  143. Tolek, W., Suriye, K., Praserthdam, P., and Panpranot, J., Enhanced stability and propene yield in propane dehydrogenation on PtIn/Mg(Al)O catalysts with various In loadings, Top. Catal., 2018, vol. 61, p. 1624.

    Article  CAS  Google Scholar 

  144. Long, L.-L., Xia, K., Lang, W.-Z., Shen, L.-L., et al., The comparison and optimization of zirconia, alumina, and zirconia–alumina supported PtSnIn trimetallic catalysts for propane dehydrogenation reaction, J. Ind. Eng. Chem., 2017, vol. 51, p. 271.

    Article  CAS  Google Scholar 

  145. Yang, C., Wu, Z., Zhang, G., Sheng, H., et al., Promotion of Pd nanoparticles by Fe and formation of a Pd3Fe intermetallic alloy for propane dehydrogenation, Catal. Today, 2019, vol. 323, p. 123.

    Article  CAS  Google Scholar 

  146. Fan, D., et al., Mn-doping induced changes in Pt dispersion and PtxMny alloying extent on Pt/Mn–DMSN catalyst with enhanced propane dehydrogenation stability, J. Catal., 2020, vol. 389, p. 450.

    Article  CAS  Google Scholar 

  147. Nakaya, Y., Hirayama, J., Yamazoe, S., et al., Single-atom Pt in intermetallics as an ultrastable and selective catalyst for propane dehydrogenation, Nat. Commun., 2020, vol. 11, no. 1, p. 28.

    Article  Google Scholar 

  148. Gorczyca, A., Raybaud, P., Moizan, V., Joly, Y., and Chizallet, C., Atomistic models for highly-dispersed PtSn/γ-Al2O3 catalysts: Ductility and dilution affect the affinity for hydrogen, ChemCatChem, 2019, vol. 11, p. 3941.

    Article  CAS  Google Scholar 

  149. Lee, M.-H., Nagaraja, B.M., Lee, K.Y., and Jung, K.-D., Dehydrogenation of alkane to light olefin over PtSn/γ-Al2O3 catalyst: Effects of Sn loading, Catal. Today, 2014, vol. 232, p. 53.

    Article  CAS  Google Scholar 

  150. Srisakwattana, T., Suriye, K., Praserthdam, P., and Panpranot, J., Preparation of aluminum magnesium oxide by different methods for use as PtSn catalyst supports in propane dehydrogenation, Catal. Today, 2020, vol. 358, p. 90.

    Article  CAS  Google Scholar 

  151. Shi, Y., Li, X., Rong, X., Gu, B., et al., Influence of support on the catalytic properties of Pt–Sn–K/θ-Al2O3 for propane dehydrogenation, RSC Adv., 2017, vol. 32, no. 7, p. 19841.

    Article  Google Scholar 

  152. Xu, Z., Yue, Y., Bao, X., et al., Propane dehydrogenation over Pt clusters localized at the Sn single-site in zeolite framework, ACS Catal., 2020, vol. 10, no. 1, p. 818.

    Article  CAS  Google Scholar 

  153. Wu, X., Zhang, Q., Chen, L., et al., Enhanced catalytic performance of PtSn catalysts for propane dehydrogenation by a Zn-modified Mg(Al)O support, Fuel Process. Technol., 2020, vol. 198, p. 106.

    Article  Google Scholar 

  154. Wang, Y., Zhou, Y., Zhou, S., He, Q., and Zhong, Y., Effect of morphological structure of PtSnNa/ZSM-5 on its catalytic performance in propane dehydrogenation, China Pet. Process. Petrochem. Technol., 2020, vol. 22, no. 1, p. 87.

    Google Scholar 

  155. Liu, L., Lopez-Haro, M., Lopes, C.W., Meira, D.M., et al., Atomic-level understanding on the evolution behavior of subnanometric Pt and Sn species during high-temperature treatments for generation of dense PtSn clusters in zeolites, J. Catal., 2020, vol. 391, p. 11.

    Article  CAS  Google Scholar 

  156. Shanlei, H., Otroshchenko, T., Dan, Z., Lund, H., and Kondratenko, E.V., The effect of ZrO2 crystallinity in CrZrOx/SiO2 on non-oxidative propane dehydrogenation, Appl. Catal. A, 2020, vol. 590, p. 117.

    Google Scholar 

  157. Hu, Z.-P., Wang, Z., Yuan, Z.-Y., et al., Cr/Al2O3 catalysts with strong metal–support interactions for stable catalytic dehydrogenation of propane to propylene, Mol. Catal., 2020, vol. 493, p. 111.

    Google Scholar 

  158. Wegrzyniak, A., Rokicińska, A., Hędrzak, E., Michorczyk, B., et al., High-performance Cr–Zr–O and Cr-Zr-K-O catalysts prepared by nanocasting for dehydrogenation of propane to propene, Catal. Sci. Technol., 2017, vol. 7, no. 24, p. 6059.

    Article  CAS  Google Scholar 

  159. Gao, X.-Y., Lu, W.-D., Hu, S.-Z., Li, W.-C., and Lu, A.-H., Rod-shaped porous alumina-supported Cr2O3 catalyst with low acidity for propane dehydrogenation, Chin. J. Catal., 2019, vol. 40, no. 2, p. 184.

    Article  CAS  Google Scholar 

  160. Shanlei, H., Otroshchenko, T., Dan, Z., Lund, H., and Kondratenko, E.V., Catalytic non-oxidative propane dehydrogenation over promoted Cr–Zr–Ox: Effect of promoter on propene selectivity and stability, Catal. Commun., 2020, vol. 138, p. 105.

    Google Scholar 

  161. Xie, Z., Ren, Y., Li, J., Zhao, Z., et al., Facile in situ synthesis of highly dispersed chromium oxide incorporated into mesoporous ZrO2 for the dehydrogenation of propane with CO2, J. Catal., 2019, vol. 372, p. 206.

    Article  CAS  Google Scholar 

  162. Oliveira, J., Volanti, D.P., Bueno, J., and Ferreira, A.P., Effect of CO2 in the oxidative dehydrogenation reaction of propane over Cr/ZrO2 catalysts, Appl. Catal. A, 2018, vol. 558, p. 55.

    Article  Google Scholar 

  163. Michorczyk, P., Zenczak-Tomera, K., Michorczyk, B., et al., Effect of dealumination on the catalytic performance of Cr-containing beta zeolite in carbon dioxide assisted propane dehydrogenation, J. CO 2 Util., 2020, vol. 36, p. 54.

  164. Hu, Z.-P., Wang, Y., Yang, D., and Yuan, Z.-Y., CrOx supported on high-silica HZSM-5 for propane dehydrogenation, J. Energy Chem., 2020, vol. 47, p. 225.

    Article  Google Scholar 

  165. Wang, H.-M., Chen, Y., Yan, X., Lang, W.-Z., and Guo, Y.-J., Cr doped mesoporous silica spheres for propane dehydrogenation in the presence of CO2: Effect of Cr adding time in sol–gel process, Microporous Mesoporous Mater., 2019, vol. 284, p. 69.

    Article  CAS  Google Scholar 

  166. Jeon, N., Seo, O., et al., Non-oxidative propane dehydrogenation over alumina-supported Co–V oxide catalysts, Appl. Catal. A, 2021, vol. 614, p. 118.

    Article  Google Scholar 

  167. Shan, Y.-L., Zhao, W.-T., Zhao, S.-L., et al., Effects of alumina phases on the structure and performance of VOx/Al2O3 catalysts in non-oxidative propane dehydrogenation, Mol. Catal., 2021, vol. 504, p. 111.

    Google Scholar 

  168. Gu, Y., Liu, H., Yang, M., et al., Highly stable phosphine modified VOx/Al2O3 catalyst in propane dehydrogenation, Appl. Catal. B, 2020, vol. 274, p. 119.

    Article  Google Scholar 

  169. Hu, P., Chen, Y., Yan, X., Lang, W.-Z., and Guo, Y.-J., Correlation of vanadium precursor and structure-performance of porous VOx/SiO2 solids for catalytic dehydrogenation of propane, Ind. Eng. Chem. Res., 2019, vol. 58, no. 10, p. 4065.

    Article  CAS  Google Scholar 

  170. Liu, Q. Yang, Z., et al., Vanadium-containing dendritic mesoporous silica nanoparticles: Multifunctional catalysts for the oxidative and non-oxidative dehydrogenation of propane to propylene, Microporous Mesoporous Mater., 2019, vol. 282, p. 133.

    Article  CAS  Google Scholar 

  171. Chen, C., Sun, M., Hu, Z., et al., Nature of active phase of VOx catalysts supported on Si Beta for direct dehydrogenation of propane to propylene, Chin. J. Catal., 2020, vol. 41, no. 2, p. 276.

    Article  CAS  Google Scholar 

  172. Farsad, A., Lawson, S., Rezaei, F., and Rownaghi, A.A., Oxidative dehydrogenation of propane over 3D printed mixed metal oxides/H-ZSM-5 monolithic catalysts using CO2 as an oxidant, Catal. Today, 2021, vol. 374, p. 173.

    Article  CAS  Google Scholar 

  173. Djinović, P., Zavašnik, J., Teržan, J., and Jerman, I., Role of CO2 during oxidative dehydrogenation of propane over bulk and activated-carbon supported cerium and vanadium based catalysts, Catal. Lett., 2021, vol. 151, p. 2816.

    Article  Google Scholar 

  174. Miranda, G.P., Martins, V.J., Neto, F., et al., Oxidative dehydrogenation of propane: developing catalysts containing VOx, V–P–O and V–Mg–O species supported on MCM-41 and activated carbon, Catal. Today, 2020, vol. 348, p. 148.

    Article  CAS  Google Scholar 

  175. Han, Z.-F., Xue, X.-L., Wu, J.-M., et al., Preparation and catalytic properties of mesoporous nV-MCM-41 for propane oxidative dehydrogenation in the presence of CO2, Chin. J. Catal., 2018, vol. 39, no. 6, p. 1099.

    Article  CAS  Google Scholar 

  176. Dai. Y., Gu. J., Tian. S., Wu. Y. et al., γ-Al2O3 sheet-stabilized isolate Co2+ for catalytic propane dehydrogenation, J. Catal., 2020, vol. 381, p. 482.

    Article  CAS  Google Scholar 

  177. Li, X., Wang, P., Wang, H., and Li, C., Effects of the state of Co species in Co/Al2O3 catalysts on the catalytic performance of propane dehydrogenation, Appl. Surf. Sci., 2018, vol. 441, p. 688.

    Article  CAS  Google Scholar 

  178. Sun, Y., Wu, Y., Shan, H., and Li, C., Studies on the nature of active cobalt species for the production of methane and propylene in catalytic dehydrogenation of propane, Catal. Lett., 2015, vol. 145, p. 1413.

    Article  CAS  Google Scholar 

  179. He, Y., Song, Y., Cullen, D.A., and Laursen, S., Selective and stable non-noble metal intermetallic compound catalyst for the direct dehydrogenation of propane to propylene, J. Am. Chem. Soc., 2018, vol. 140, no. 43, p. 14010.

    Article  CAS  PubMed  Google Scholar 

  180. Zhang, L., Wang, Z.-Y., Song, J., et al., Facile synthesis of SiO2 supported GaN as an active catalyst for CO2 enhanced dehydrogenation of propane, J. CO 2 Util., 2020, vol. 38, p. 306.

  181. Tan, S. Gil, L.B., et al., Catalytic propane dehydrogenation over In2O3–Ga2O3 mixed oxides, Appl. Catal. A, 2015, vol. 498, p. 167.

    Article  CAS  Google Scholar 

  182. Chen, C., Zhang, S., Wang, Z., and Yuan, Z.-Y., Ultrasmall Co confined in the silanols of dealuminated beta zeolite: A highly active and selective catalyst for direct dehydrogenation of propane to propylene J. Catal. 2020, vol. 383, p. 77.

    Article  CAS  Google Scholar 

  183. Wang, L., Ao, C., Zhai, Y., et al., Highly active and stable Co3O4 catalyst for the low-temperature oxidative dehydrogenation of propane, Inorg. Chem. Commun., 2020, vol. 112, p. 107.

    Article  Google Scholar 

  184. Huang, C., Han, D., Guan, L., et al., Bimetallic Ni–Zn site anchored in siliceous zeolite framework for synergistically boosting propane dehydrogenation, Fuel, 2022, vol. 307, p. 121.

    Article  Google Scholar 

  185. Choi, S.-W., Kim, W.-G., So, J.-S., et al., Propane dehydrogenation catalyzed by gallosilicate MFI zeolites with perturbed acidity J. Catal., 2017, vol. 345, p. 113.

    Article  CAS  Google Scholar 

  186. Cao, L., Dai, P., Zhu, L., et al., Graphitic carbon nitride catalyzes selective oxidative dehydrogenation of propane, Appl. Catal. B, 2020, vol. 262, p. 118.

    Article  Google Scholar 

  187. Pan, S.-F., Yin, J.-L., Zhu, X.-L., et al., P-modified microporous carbon nanospheres for direct propane dehydrogenation reactions, Carbon, 2019, vol. 152, p. 855.

    Article  CAS  Google Scholar 

  188. Hu, Z.-P., Ren, J.-T., Yang, D., et al., Mesoporous carbons as metal-free catalysts for propane dehydrogenation: Effect of the pore structure and surface property, Chin. J. Catal., 2019, vol. 40, no. 9, p. 1385.

    Article  CAS  Google Scholar 

  189. Węgrzyniak, A., Jarczewski, S., Kuśtrowski, P., and Michorczyk, P., Influence of carbon precursor on porosity, surface composition and catalytic behaviour of CMK-3 in oxidative dehydrogenation of propane to propene, J. Porous Mater., 2018, vol. 25, p. 687.

    Article  Google Scholar 

  190. Li, Y., Zhang, Q., Yu, X., et al., Efficient Fe based catalyst with nitrogen doped carbon material modification for propane non-oxidative dehydrogenation, Carbon Resour. Convers., 2020, vol. 3, p. 140.

    Article  CAS  Google Scholar 

  191. Hu, Z.-P., Zhao, H., Chen, C., and Yuan, Z.-Y., Castanea mollissima shell-derived porous carbons as metal-free catalysts for highly efficient dehydrogenation of propane to propylene, Catal. Today, 2018, vol. 316, p. 214.

    Article  CAS  Google Scholar 

  192. Hu, Z.-P., Chen, C., Ren, J.-T., and Yuan, Z.-Y., Direct dehydrogenation of propane to propylene on surface-oxidized multiwall carbon nanotubes, Appl. Catal. A, 2018, vol. 559, p. 85.

    Article  CAS  Google Scholar 

  193. Ponomarev, A.B., Smirnov, A.V., Shostakovskii, M.V., and Pisarenko, E.V., A catalyst for propane dehydrogenation and a method to produce propylene using this catalyst, RF Patent 2751701, Byull. Izobret., 2021, no. 20.

  194. Ponomarev, A.B., Smirnov, A.V., Shostakovskii, M.V., and Pisarenko, E.V., A zeolite catalyst for propane dehydrogenation and a method to produce propylene using this catalyst, RF Patent 2751703, Byull. Izobret., 2021, no. 20.

  195. Ponomaryov, A.B., Smirnov, A.V., Pisarenko, E.V., and Shostakovsky, M.V., Enhanced Pt dispersion and catalytic properties of NaCl-promoted Pt/MFI zeolite catalysts for propane dehydrogenation, Microporous Mesoporous Mater., 2022, vol. 339, Article 112010.

Download references

Funding

This work (dehydrogenation section) was supported by Ministry of Science and Higher Education of the Russian Federation, contract no. 075-00697-22-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Pisarenko.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pisarenko, E.V., Ponomarev, A.B., Smirnov, A.V. et al. Prospects for Progress in Developing Production Processes for the Synthesis of Olefins Based on Light Alkanes. Theor Found Chem Eng 56, 687–722 (2022). https://doi.org/10.1134/S0040579522050335

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579522050335

Keywords:

Navigation